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ABSTRACT

Graph Neural Networks (GNNs) have been widely used to learn from graph-

structured data, with heterogeneous graphs (HetGs) gaining prominence due to their

ability to represent diverse real-world systems. However, class imbalance—where

some node classes are underrepresented—poses a significant challenge for learning

tasks like node classification on HetGs. This work introduces HetGSMOTE, a novel

oversampling method that adapts SMOTE-based techniques to the heterogeneous

graph setting by incorporating node-type, edge-type, and contextual metapath in-

formation into the oversampling process. HetGSMOTE constructs a content- and

neighbor-type-aggregated embedding space using a base model to generate synthetic

nodes and trains edge generators for each node type to model relational structures,

addressing key challenges in imbalanced learning on HetGs. Extensive experiments on

benchmark datasets and across various base models demonstrate that HetGSMOTE

consistently outperforms baseline methods in mitigating class imbalance and boost-

ing classification accuracy, particularly in extreme imbalance cases, while maintaining

broad adaptability to different base models.
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Chapter 1

Introduction
Graph-based learning and Graph Neural Networks (GNNs) have garnered significant

attention for their capacity to model intricate relationships and dependencies within

structured data [2, 3]. Among the graph-based structures, heterogeneous graphs

(HetG) are ubiquitous in real-world scenarios representing a wide range of real-life

data. These include bibliographic networks, social networks, recommender systems

[4, 5], etc. In HetGs, entities and relations are of multiple types highlighting complex

relationships, with nodes carrying both structured and unstructured content. Con-

sequently, downstream tasks like node classification [6, 7] and link prediction [8, 9]

hold significant importance. While Heterogeneous Graph Neural Networks (HGNNs)

[6] excel in node classification tasks, they are typically optimized for balanced class

distributions. However, in many real-world applications, certain classes may have sig-

nificantly fewer instances than others, leading to suboptimal performance when using

traditional baseline models, calling for imbalanced learning techniques like oversam-

pling on HetGs.

This work proposes HetGSMOTE, a novel oversampling approach in heteroge-

neous graphs, which leverages Synthetic Minority Oversampling Techniques (SMOTE)

[10] on the representation matrices of the nodes to mitigate the class imbalance prob-

lem. SMOTE has proven effective in balancing class distributions in various do-

mains, including homogeneous graphs [11], but its direct application to heterogeneous

graph data presents unique challenges, such as requiring node-type, edge-type, and

metapath-based contextual information. To overcome these challenges, HetGSMOTE
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1 Introduction

extends the GraphSMOTE [11] approach proposed for homogeneous graphs to het-

erogeneous graphs. It constructs a content-aggregated and neighbor-type-aggregated

embedding space that encodes node similarities, facilitating the generation of syn-

thetic samples that preserve the contextual relationships within the graph. Simulta-

neously, edge generators for different node types are trained to model the relational

information between nodes, ensuring that the synthesized samples retain essential

structural characteristics. This way, HetGSMOTE handles the first two of the three

required criteria for SMOTE-based oversampling-:

1. Generation of synthetic samples for increasing the diversity and reducing inter-

class imbalance.

2. Oversampling in the safe regions of the embedding space, i.e., source samples

less prone to generating noisy samples [12].

3. Oversampling on difficult-to-classify samples to overcome the intra-class imbal-

ance [13, 14].

After the aggregation step, the related nodes are in closer clusters than less related

nodes due to having similar neighborhoods, thereby producing safer spaces for over-

sampling via SMOTE. The contributions are-:

1. Studying the class imbalance problem in heterogeneous graphs, which has wide

real-life implications.

2. Extending the GraphSMOTE oversampling approach to the heterogeneous graph

with our novel HetGSMOTE strategy.

3. Demonstrating the effectiveness of our approach through experiments conducted

across diverse settings and datasets, showcasing its superior performance com-

pared to baseline methods.
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1 Introduction

Chapter 2 defines and explains the background and terms related to the context

of the paper. The related works are given in Chapter 3, and the Methodology is given

in Chapter 4, which proposes the HetGSMOTE framework. The experiments with

related details can be found in Chapter 5 followed by the results and discussions in

Chapter 6. Chapter 7 summarizes the work with conclusions and future directions.

3



Chapter 2

Background
A graph, G(V,E), is a mathematical structure that represents the relationship be-

tween objects. It is made up of vertices (or nodes), which denotes the individual

objects, while edges are the connections that link pairs of vertices. Each graph’s

structure helps reveal patterns and insights about how components are connected.

Homogeneous graphs consist of a single type of node and edge, such as social net-

works with only user nodes and friendship links. In contrast, heterogeneous graphs

contain multiple types of nodes and/or edges, enabling the capture of richer semantic

relationships—for example, bibliographic networks with papers, authors, and venues.

Graph Neural Networks (GNNs) have proven highly effective in analyzing graph-

structured data, with applications spanning from social network analysis to molecular

biology and recommendation systems. By leveraging the relational information be-

tween nodes, GNNs are capable of learning meaningful representations that capture

both local and global graph properties.

General GNNs update the state (or embedding) of each node in a graph based on

the states of its neighbors [1]. The following equation characterizes them:

h(t)
v = UPDATE(h(t−1)

v ,AGGREGATE({{h(t)
u : uϵN(v)}})) (2.1)

The AGGREGATE function collects information from the neighbors, and the UP-

DATE function updates the node embedding using aggregated information. This

information can be used for performing node-level, edge-level, or graph-level tasks,

such as classification or regression. Examples include user-bot prediction, friendship

recommendation, and protein property prediction [4].
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2 Background

Figure 2.1: Illustration of homogeneous and heterogeneous graphs with node imbal-
ance

In the context of node classification and graph datasets, a common challenge is

class imbalance, where certain node classes are underrepresented. These underrepre-

sented classes are referred to as the minority class. This imbalance can bias learning

algorithms toward majority classes, reducing the performance on minority classes.

The issue is particularly pronounced in heterogeneous graphs, where diverse struc-

tures and relations further complicate representation learning. Figure 2.1 illustrates

homogeneous and heterogeneous graphs, with the presence of node imbalance.

To address class imbalance in node classification tasks, oversampling techniques

are commonly employed to increase the representation of minority classes. In graph

learning, oversampling refers to the generation or duplication of synthetic node rep-

resentations from underrepresented classes to overcome the class imbalance during

training. Unlike traditional settings, oversampling in graphs must consider not only

the feature space but also the structural and relational context of each node, making

the design of effective oversampling strategies particularly challenging in heteroge-

neous graphs where node types and relationships vary.

5



2 Background

The Synthetic Minority Over-sampling Technique (SMOTE) [10] is one of the

widely used methods among them. Rather than simply duplicating existing samples,

SMOTE generates new synthetic samples by interpolating between the representation

vectors of selected minority class samples. By using SMOTE in a feature space where

content and neighborhood aggregation are accounted for, SMOTE can be adapted

to Graph datasets. This is the intuition behind GraphSMOTE [11] and our work

HetGSMOTE. A glossary of Machine Learning terms is given in Appendix A.

6



Chapter 3

Related Works
Class imbalance, where one class significantly outnumbers another, leads to biased

models and poor generalization, evident in tasks such as fraud detection, rare disease

identification, and bot recognition. Addressing this issue involves algorithm-level,

data-level, and hybrid strategies [11]. Data-level methods, such as oversampling and

data augmentation, increase minority class samples. Algorithm-level approaches in-

clude cost-sensitive techniques, ensemble learning, and threshold adjustments [16].

Hybrid methods combine these strategies, e.g., classifier-specific models [15].

Oversampling generates synthetic minority samples with methods like SMOTE,

which interpolates between samples. Variants of SMOTE have evolved through vari-

ous enhancements aimed at improving data representation. Some methods including

DBSMOTE [27], and k-means SMOTE [14], focus on generating synthetic samples

within the minority class space with smaller scales. Methods like borderline-SMOTE

[12], ADASYN [13], and Adaptive-SMOTE [24] also generates samples in difficult

regions within the minority class. These improvements help mitigate overgeneraliza-

tion by filtering out potential noise or by strategically generating additional samples

within specific regions of the minority class. A newer technique, NaNG-SMOTE [25],

addresses the same obstacles by using a natural neighborhood graph and subgraph

cores of the minority class to generate synthetic samples while filtering noise based on

edge characteristics. Oversampling has proven effective in numerous machine learn-

ing domains, addressing the issue of limited minority data [15] and improving model

performance.
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3 Related Works

HetG learning has evolved from manual feature engineering to representation

learning, broadly categorized into shallow and deep models [17]. Shallow models

include random walk-based strategies like metapath2vec, which use metapath-guided

random walks, and decomposition methods such as HERec [5]. DeepWalk introduced

SkipGram embeddings for node co-occurrence probabilities. Variants like Spacey,

JUST, and HHNE [4] add enhancements like jump-stay strategies and heterogeneous

walks. Deep models leverage Heterogeneous Graph Neural Networks (HGNNs), with

unsupervised methods like HetGNN [6], and semi-supervised approaches like HAN [7]

using attention mechanisms. Advanced HGNNs, like MAGNN and HGT [19], refine

intra- and inter-metapath aggregations. Techniques such as encoder-decoder models

[4] and adversarial frameworks like GraphGAN [20] further enrich HetG represen-

tation learning. Oversampling techniques for graph data, like GraphSMOTE [11],

address the class imbalance in homogeneous graphs by generating synthetic nodes

and connections. Other methods, such as GraphMixup [23] and Graph-DAO [22], use

latent space sampling and semantic relations. Despite progress, SMOTE has found

limited applications in graph-based learning. For HetGs, there are even fewer tech-

niques, such as FincGAN [21], an adversarial GAN-based approach, and BARE[26],

which leverages student-teacher networks to distill knowledge from real nodes for

improved learning. This motivates our work on the extension of GraphSMOTE to

heterogeneous graphs.

8



Chapter 4

Methodology
4.1 Problem Statement

Consider a Heterogeneous Graph (HetG), denoted as G = (V,A, F ). Here, V =

{v1, . . . , vn} is the node set, and Vt ∈ V signifies its subset containing nodes of type

t. A is the set of adjancency matrices, where Atu ∈ A denotes the adjancency matrix

between nodes of types t and u. Atu ∈ Rnt×nu , where nt and nu are the numbers of

nodes of types t and u, respectively. Finally, F is the set of attribute matrices, where

F t
i ∈ F represents the i-th attribute matrix for nodes of type t. F t

i ∈ Rnt×d, where d

is the embedding dimension. Specifically, F t
i [vj, :] ∈ R1×d is a row vector representing

the i-th attribute embedding for the node vj of type t. Class information for nodes of

type t is denoted by Y ∈ Rnt . In most real-world scenarios, only a subset of Yt may be

available during training, denoted by Y ′
t ∈ Yt for the labeled subset of nodes V ′

t ∈ Vt.

The subset is usually small. If there exist k classes, represented as c1, c2, . . . , ck and

|ci| is the number of samples associated with i-th class, we can measure the degree of

class imbalance using the imbalance ratio (I), defined as:

(IR)i =
|ci|

maxj(|cj|)
(4.1)

where maxj |cj| is the size of the largest class. A perfectly balanced dataset, where

each class has the same number of nodes, corresponds to (IR)i = 1 for all classes.

Conversely, lower (IR)i values indicate a higher class imbalance, with some classes

having significantly fewer nodes than others.

In this study, a semi-supervised approach is employed to classify nodes on diverse

9



4 Methodology

Figure 4.1: HetGSMOTE Pipeline

graphs in a transductive setting. The entire graph is available for training and testing,

with only a few nodes labeled. These selected nodes are divided into different sets for

training, validation, and testing during the learning process. Given the heterogeneous

graph G with an imbalanced class distribution and a smaller subset of nodes V ′
t with

labels, our objective is to use the HetGSMOTE framework to generate synthetic

nodes, V syn
t , and synthetic edges,A′

tu, till the class imbalance has been overcome.

Hence, we will be able to train a node classifier f that performs well for both the

majority and minority classes, that is, f(G) → Y .

4.2 HetGSMOTE framework

As shown in Fig. 4.1, the pipeline of HetGSMOTE consists of four parts-:

• Encoder

• SMOTE-based oversampling

• Edge Generators

• Classifier

10



4 Methodology

4.2.1 Encoder

The Encoder is a feature extractor based on models like HGNN [6], MAGNN [19],

and HAN [7] that operate on Heterogeneous Graphs. The encoder is used to generate

learned embeddings for the different types of nodes of the heterogeneous graphs,

followed by the content aggregation and type-specific neighbor aggregation, specific

to the base model. The output of this layer is node feature vectors in the embedding

space that are then used for oversampling via SMOTE.

Content Aggregation: In this layer, the attribute matrix for each node is con-

catenated along the embedding dimension and then passed through a linear layer

and nonlinearity to reduce its dimension back to the original embedding dimension,

thereby combining the contextual information from all generated attributes of the

nodes.

F t[vj, :] = σ

[
W1 ·

(
n⊕

i=1

F t
i [vj, :]

)]
(4.2)

where F t
i is the ith attribute matrix for the node vj, n is the total number of attribute

matrices, F t is the content aggregated matrix, W1 is the weight matrix, t the node

type and σ refers to activation function like ReLU.

Type Based Neighbor Aggregator : Here, the content-based aggregated representa-

tion matrix for each node type is concatenated with the neighbor type-based aggre-

gated feature matrix and then reduced using a linear layer. Firstly, a list of frequently

occurring neighbor nodes along different random walks is extracted for each node. The

top k frequently occurring neighbor nodes of each type are taken from the random

walks and given the same importance as direct edges, giving a total of t2 adjacency

matrices where t is the number of node types.

For each node, the neighbor type-based aggregations are carried out by extract-

ing the embedding of the neighbor nodes using the corresponding adjacency matrix,

11



4 Methodology

according to the base model. These type-based neighbor aggregated matrices Gt are

later combined using attention weights. This final aggregated matrix is concatenated

with the node’s content aggregated matrix and reduced using a linear layer. The

equations are:

X t[vj, :] = F t[vj, :]⊕
∑
t

αt
vj
Gt[vj, :] (4.3)

Gt[vj, :] =
1

|N t(vj)|
∑

v∈Nt(vj)

σ
(
W2 ·

(
F t[v, :]

))
(4.4)

where X t is the final embedding matrix for nodes of type t, N t is the neighbor set

of type t for the node, and αt
vj

are the attention weights for combining neighbor

aggregated matrices Gt. The attention weights, αt
vj
, are given by:

αt
vj
=

exp(σ(W3 · (Gt[vj, :]⊕ F t[vj, :])))∑
v∈Nt(vj)

exp(σ(W3 · (Gt[v, :]⊕ F t[v, :])))
(4.5)

where σ is the LeakyReLU activation function. The given neighborhood aggregation

in the equation 4.4 is for for HGNN model. Similarly, other base models, HAN and

MAGNN, can also be used.

4.2.2 SMOTE

After projecting the nodes into the embedding space, some samples are selected ran-

domly from the minority class of the training set to oversample via SMOTE. SMOTE

generates synthetic nodes in the minority class by interpolating between nearest neigh-

bor samples the same class. For a chosen minority node, vj, with label Yvj and let its

nearest neighbor from the same class be denoted by NN(vj). This NN(vj) is found by

calculating the Euclidean distances between vj and other nodes of the minority class

in the embedding space, as shown below.

NN(vj) = argmin
v∈Vt

∥X t[vj, :]−X t[v, :]∥, s.t. Yvj = Yv (4.6)

12



4 Methodology

Using this nearest neighbor, synthetic nodes that inherit the same label as the

source nodes can be generated. The synthetic node embeddings X t
s (s implies syn-

thetic) is generated via interpolation such that it lies in the vicinity of the source

nodes, that is, on the line joining the two.

X t
s[vj, :] = (1− r) ·X t[NN(vj), :] + r ·X t[vj, :] (4.7)

where r is a random number such that r ∈ [0, 1]. New nodes are generated until

the imbalance is removed. The newly generated samples, belonging to the objective

synthetic node set V syn
t , are appended to the original feature matrix. Subsequently,

the adjacency matrices for the augmented graph Atu, where u represents any arbitrary

node type, are inherited from the adjacency matrices of the original graph A0
tu.

By incorporating the encoder layer before oversampling, GraphSMOTE ensures

that the generated samples are less prone to being noisy. This methodology stems

from the observation that, following the aggregation phase, nodes belonging to the

same class tend to have embeddings that are closer in the embedding space since

they share similar neighbors. This facilitates the clustering of source nodes, defining

distinct decision boundaries between classes. As a result, the oversampling process

generates samples within these closely clustered regions, contributing to the tech-

nique’s effectiveness.

4.2.3 Edge Generator

Since the synthetic nodes are isolated from the graph, they may lack the essential

relational information in their encoding. Hence, an edge generator neural network

model generates the edges for these synthetic nodes. The edge generator is trained

to reconstruct the adjacency matrix for real nodes using their node representations,

which can later be used for effective prediction of the edge between synthetic nodes.

13



4 Methodology

The newly generated adjacency lists for each synthetic node are appended to the

original matrix A0
tu. The generator uses a vanilla design for simplicity, using the

weighted inner product of the feature embedding of the respective node types between

which the edges are to be generated.

Âtu = σ(X t ·W4 ·Xu)⊙ Atu (4.8)

where Âtu is the predicted adjacency matrix between node type t and u for the

augmented graph and σ is the sigmoid function. To facilitate learning, the adjacency

matrix is element-wise multiplied (⊙) by the inherited adjacency matrix from the

oversampling step Atu to remove the far unrelated edges from being learned. Separate

generators are trained for edges between the different combinations of edge types. The

edge Generator is trained using the loss function given by:

Le =
∑
u,t

∥Â0
tu − A0

tu∥2 (4.9)

where Â0
tu refers to the predicted adjacency matrix for the real nodes, i.e., a graph

without synthetic nodes.

Two strategies [11] are employed with the edge generator to incorporate predicted

edges for synthetic nodes into the augmented adjacency matrix. In the first strategy,

a threshold η (set to 0.5) is applied on the predicted synthetic edges, as given in

equation (4.10). Here, the generator is optimized solely for the edge reconstruction

task.

(A′
tu)ij =

{
1, if (Âtu)ij ≥ η,

0, otherwise.
(4.10)

Here, A′
tu is the final adjacency matrix where new synthetic nodes and edges are

inserted into A0
tu, which is then sent to the classifier. For the second strategy, we

keep the synthetic edges as soft edges instead of binary ones:

(A′
tu)ij = (Âtu)ij (4.11)

14



4 Methodology

In this scenario, gradients with respect to A′
tu can be backpropagated from the classi-

fier. Consequently, both edge prediction loss and node classification loss can be used

to optimize the edge generator.

4.2.4 Classifier

A simple GNN block is used as a classifier for the framework. It contains a heteroge-

neous neighbor aggregator layer similar to the one used in the encoder. This gives us

freshly aggregated synthetic node embeddings with their relational information using

the predicted edges of the synthetic nodes from the edge generator step. The final

embedding is passed through an MLP head for classification.

Pvj = σ(MLP(X ′[vj, :])) (4.12)

where Pvj is the prediction for node vj with fresh embedding X ′, and σ is softmax

function. The classifier module uses the cross-entropy loss given by:

Lcls =
∑
vj∈V ′

∑
c

[
1
(
Yvj == c

)
· log(Pvj)

]
(4.13)

where Yvj is the true class of node vj in the oversampled set V ′, and Pvj is the

predicted probability of node vj belonging to class c. For evaluation, the class with

the highest probability is taken as the predicted class, Y ′
v , for node v:

Y ′
v = argmax

c
Pv. (4.14)

4.3 Baseline settings and proposed Settings

For the purpose of the study, some baseline oversampling techniques will be compared

against various proposed settings based on the HetGSMOTE pipeline in the previous

section. These different experimental settings and baselines are listed in Table 4.1.
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4 Methodology

Table 4.1: Overview of Baseline settings and Proposed Settings

Setting Description

no Original datasets without oversampling.
up Upsampling by duplicating source nodes. Synthetic node adjacency list:

Atu[vj , :] = A0
tu[v, :].

smote SMOTE on raw embedding space post-content aggregation. Synthetic node
adjacency list: Atu[vj , :] = min(1, A0

tu[v1, :] +A0
tu[v2, :])

reweight Cost-sensitive approach adding higher weight to the loss function for minor-
ity classes.

embed-sm SMOTE applied after neighbor aggregation, without edge generator. As-
sumes sufficient relational information is transferred post-interpolation.

em-smote SMOTE after neighbor aggregation with an inherited adjacency matrix,
showing edge generator impact.

gsmT HetGSMOTE variant with edge generator trained only on edge loss.
gsmO HetGSMOTE variant with edge generator trained on both edge loss and

classification loss.
gsm-preT HetGSMOTE with pre-trained edge generator and encoder on edge predic-

tion task, fine-tuned on edge loss.
gsm-preO Similar to gsm-preT, but edge generator fine-tuned on both edge loss and

classification loss.

Among the proposed settings, we have chosen to perform pretraining of the En-

coder and Edge Generator on edge prediction task in some settings (settings with

’pre’) to study how models’ prior knowledge of graph structure helps the framework.

Following the equation (4.10), the ‘T’-type setting trains the edge generator using

only the edge prediction loss. In contrast, the ‘O’-type setting uses both edge predic-

tion and classification losses to train or fine-tune the edge generators, as motivated by

the soft synthetic edge formulation in Equation (4.11). The effect of these different

settings is studied later.

16



Chapter 5

Experiments
5.1 Optimization

The optimization objective for HetGSMOTE involves the optimization of weights

for the encoder, edge generator, and classifier. As discussed before, we have two

loss functions: the edge loss (Le) from the edge generator and the classification loss

(Lcls) from the classifier. They are combined as L = λ · Le + Lcls, where λ is a

hyperparameter that controls the contribution from the different tasks. The resulting

objective function of HetGSMOTE is the same as for GraphSMOTE:

min
θ,ϕ,φ

(Lcls + λ · Le) (5.1)

where θ, ϕ, and φ are the parameters from the encoder, edge generator, and node

classifier, respectively. As discussed before in Section 4.3, we are also pretraining the

encoder and edge generator using Le, in some settings.

5.2 Datasets

This work uses heterogeneous datasets of various sizes to show the domain indepen-

dence of our method. These include AMiner A-II and DBLP bibliographic datasets,

movie collaboration-based IMDb, and biomedical PubMed datasets.
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5 Experiments

Table 5.1: Information about datasets (labeled node type are marked with ∗)

Dataset Nodes Edges Labels

AMiner-AII
author∗: 20171 author-paper: 42379 Classes: 4
paper: 13250 paper-paper: 14583 Minority: 3
venue: 18 paper-venue: 13250

IMDb
movies∗: 4666 movie-actor: 13990 Classes: 3
directors: 2271 movie-director: 4666 Minority: 2
actors: 5845

DBLP

paper∗: 14328 author-paper: 19645 Classes: 4
author: 4057 paper-term: 85810 Minority: 3
term: 7723 paper-conference: 14328
conference: 20

PubMed
nodes: 63109 edges: 244986 Classes: 8
4 types 10 types Minority: 6

AMiner-AII [6]: This is an academic dataset that includes paper publications

in top venues related to artificial intelligence and data science from year 2006 to

2015. Each paper contains bibliographic content information such as 128-dimensional

title embedding and a 128-dimensional abstract embedding. The author and venue

attributes are extracted from the random walks in the graph using Par2Vec [18].

IMDb [7]: This is a subset of the Internet Movie Database (IMDB) dataset

collected from [7]. This is a movie-based dataset where movies can belong to one of

the three classes (action, comedy, drama) according to their genre. Their features

are derived from the representation words of the plot keywords, a 128-dimensional

embedding. The attributes of other nodes are determined from the random walks

using Par2Vec [18].

DBLP[19]: This is a subset of the DBLP computer science bibliography website

dataset collected from [19] containing bibliographic information for four node types

with corresponding binary attributes of 256 dimensions. The representation words of
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5 Experiments

their paper keywords describe the author node’s features.

PubMed [8]: This is bio-medical data describing relations between genes, dis-

eases, chemicals, and species with corresponding attributes of 200 dimensions each.

The links include gene-gene interactions, gene-disease associations, chemical-species

relationships, etc. There are eight target labels for the disease nodes.

5.3 Experimental Settings:

To compare the performance of the methods, the baseline oversampling methods and

HetGSMOTE are compared under various settings. These different experimental

settings and baselines were listed in Table 4.1. We have both different edge loss

variants as well as pretraining variants among these proposed variants, which will be

studied later.

The experiments were conducted with HetGSMOTE with three base models:

HGNN, HAN, and MAGNN. These models were evaluated in combination with 4

datasets: AMiner-AII, IMDb, DBLP, and Pubmed with different imbalance ratios

ranging from 0.1 to 0.9 in steps of 0.1.

5.4 Evaluation Metric

In this study, I use three evaluation metrics for the imbalanced classification problem

as used in GraphSMOTE. They are accuracy (ACC), mean AUC-ROC score (AUC),

and mean F-1 score (F1).

Accuracy is calculated as:

Accuracy =
Correct Predictions

Total Predictions
(5.2)

Accuracy measures the proportion of nodes that are correctly classified. While it

can be misleading in imbalanced scenarios due to its insensitivity to class distribution,
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it remains useful in evaluating model performance after class imbalance has been

addressed, such as through oversampling.

F1-Score is calculated, for each class, as:

F1 = 2 · Precision · Recall
Precision + Recall

(5.3)

where,

Precision =
TP

TP + FP
, Recall =

TP

TP + FN

Here, TP (True Positives) is the number of nodes that are correctly predicted as

belonging to the class, FP (False Positives) is the number of nodes that are incorrectly

predicted as belonging to the class, and FN (False Negatives) is the number of nodes

from the class that was incorrectly predicted. A high F1 score reflects a good balance

between precision and recall, meaning that the model is efficient in identifying positive

cases while minimizing false positives and false negatives.

The AUC score, for each class, is calculated as:

AUC =

∫ 1

0

TPR(FPR) d(FPR) (5.4)

where,

TPR =
TP

TP + FN
, FPR =

FP

FP + TN

Here, TPR (True Positive Rate) and FPR (False Positive Rate) are calculated as

given above, where TN (True Negatives) is the number of nodes that are correctly

predicted as not belonging to the class. AUC score tells us about the model’s ability

to rank a randomly selected positive example higher, compared to a randomly selected

negative one.

Both AUC and F1 are non-weighted averaged over all classes to exhibit their

performance over minority classes better. The threshold for the F1-score is allowed

to be adaptively adjusted to give the best results for comparative study.
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5.5 Configuration

All experiments have been done on a 64-bit system with Nvidia GPU (A100 80GB

PCIe) and ADAM optimization. Three learning rates were tested and set on 1e-4

for all the datasets and models as per the performance with the weight decay 5e-4.

The hyperparameter λ is set to 1e-6 for gsm-preO and gsmO settings, whereas it

was set to 10 for others. The models are trained for 200 epochs since convergence

occurred around 120-160. The embedding dimension was taken between 128 and 256,

depending on the specific dataset and its attributes. The evaluation of each of the

baselines and settings was done 10 times on 10 training subsets for reducing bias, with

defined seeds for reproducibility, and the average results are presented for different

imbalance ratios, up-sampling ratios, and training sizes of the majority class.
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Chapter 6

Results and Discussion
Since the results were obtained across all base models, datasets, and imbalance ratios

with 3 different metrics, the subsequent sections show the most significant results

among each choice depending on the context of evaluation. Due to the limited space,

the results shown here only contain the mean metrics across 10 training subsets as

mentioned before. Bold values indicate the highest and underline indicate the second

highest among its counterparts in each imbalance-ratio/ upsampling-ratio/training

size, depending on the results.

6.1 Influence of Up-sampling Ratio

The upsampling ratio defines the fractional increase in minority samples to overcome

the imbalance. An upsampling ratio of 1 implies the minority size was doubled by

oversampling. Experiments with the upsampling ratio highlight the learning curve of

our oversampling technique in different oversampling stages and the overgeneration

problem when too many synthetic nodes are generated or overcompensated. In the

experiments, the upsampling ratio scale is varied as [0.2, 1.2] in 0.2 steps to obtain

results for both high and low-ratio cases while keeping the imbalance ratio to 0.5. The

results were obtained from HetGMOTE with HGNN base model on IMDb dataset

and are tabulated in Table 6.1. We make the following observation from the table:

• HetGSMOTE variants show a similar trend where gsm-preO outperforms all

the baselines regularly from the 0.6 ratio threshold in the ACC metric, as high-

lighted in the table. This shows that the generated node samples have an impact
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6 Results and Discussion

on the performance without fail.

• For lower ratios, reweight, smote, and embed-sm give better results in 3 out of 8

cases. Baseline em-smote performing better might indicate the less importance

of the edge generators when synthetic samples are low, which can affect the

classification negatively compared to simpler oversampling.

• Another trend involves the decrease in the performance of 3 out of 4 proposed

approaches as we go from 1.0 to 1.2, likely due to the overgeneration of synthetic

samples, which affects the embedding quality.

Table 6.1: Test ACC vs Upsampling Ratio (HGNN base model and IMDb dataset)

Setting 0.2 0.4 0.6 0.8 1.0 1.2

no 0.5047 0.4956 0.5054 0.5011 0.5047 0.5091
up 0.5001 0.5013 0.505 0.504 0.4987 0.5092
smote 0.5066 0.4998 0.504 0.4976 0.5021 0.5045
reweight 0.4997 0.5011 0.5038 0.5031 0.4996 0.4997
embed-sm 0.5031 0.5000 0.4963 0.5056 0.5022 0.4963
em-smote 0.4951 0.5078 0.4976 0.5021 0.5033 0.4944

gsm-T 0.5002 0.5015 0.4926 0.4944 0.501 0.4917
gsm-O 0.5012 0.4921 0.5010 0.5010 0.4946 0.4900
gsm-preT 0.5018 0.5062 0.5060 0.5025 0.5095 0.5060
gsm-preO 0.5035 0.5065 0.5062 0.5084 0.5090 0.5148

6.2 Influence of Training size

Here, Training size refers to the maximum size of a minority class used for training.

This experiment evaluates how well HetGSMOTE-based approaches perform on a

small labeled training subset of the graph that emulates real-life scenarios and also

in this semi-supervised setting. In the experiments, the training size varies between

numbers less than 150 depending on the maximum size of available labeled nodes for
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6 Results and Discussion

each class in each dataset. The validation and testing are taken to be higher than

the training size. The training size more or less goes from extremely small (5%) of

total size to small (10%) of the total size. The imbalance ratio and upsampling ratio

are taken to be 0.5 and ’balanced,’ respectively. The experiment was conducted on

the DBLP dataset, where the largest minority class was available for this study. The

results are tabulated in Table 6.2. We make the following observation from the table:

• HetGSMOTE variants show a similar trend where these variants perform weakly

at extremely small training sizes, 50 and 80, and are outperformed by reweight.

It may be because of the possible overcompensation of synthetic nodes by over-

sampling compared to the total number of target nodes, which might introduce

noise in the embedding space.

• The performance of HetGSMOTE tends to improve as the training size in-

creases and surpasses the rest of the baselines after the aforementioned thresh-

olds (above 80 in this case).

Table 6.2: Test ACC vs training size (HGNN base model and DBLP dataset)

Settings 50 80 100 150

no 0.7692 0.8092 0.8067 0.8213
up 0.7581 0.8115 0.8087 0.8351
smote 0.7575 0.7917 0.7991 0.8295
reweight 0.7908 0.8184 0.8222 0.8422
embed-sm 0.7335 0.8079 0.7989 0.8237
em-smote 0.7715 0.8073 0.8097 0.8225

gsm-T 0.732 0.751 0.7787 0.7968
gsm-O 0.7861 0.7871 0.8254 0.8417
gsm-preT 0.7746 0.8126 0.8168 0.8327
gsm-preO 0.7526 0.8082 0.8128 0.8457
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6 Results and Discussion

6.3 Influence of pre-Training

As mentioned before in Section 4.3, the pre-trained settings gsm-preT and gsm-preO

had encoders and edge generator retained on edge-prediction task and fine-tuned

on different losses. Figure 6.1 shows the evolution of the performance of different

settings across training epochs. where the pre-trained settings and their counterparts

are compared, the performance for the pre-trained models was higher compared to

the normal settings, gsm-T, and gsm-O. This shows that pretraining gives an edge to

the model in identifying graph Structures before the actual task of Node classification

takes place.

Figure 6.1: Comparison of the effect of pretraining (HGNN base model and IMDb
dataset)

6.4 Performance of HetGSMOTE

To show the superior performance of the HetGSMOTE framework, we show its per-

formance with the HAN base model on IMDb datasets. The results are tabulated in

Table 6.3 for all metrics. Here, we make the following observations:
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6 Results and Discussion

• HetGSMOTE variants have shown higher performance than their counterparts

in most cases across all three metrics, showcasing its superiority over similar

oversampling techniques.

• On accuracy metric, a reliable metric in the classification task, we can see that

gsm-preO has performed the best among the proposed settings. The same is

visible across other metrics too.

Table 6.3: Performance vs. imbalance ratio (HAN base model and IMDb dataset)
Metric Setting 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ACC

no 0.4473 0.4575 0.4787 0.4997 0.5167 0.515 0.525 0.5162 0.518
up 0.4428 0.4563 0.4718 0.4852 0.5108 0.5083 0.5203 0.5198 0.5233

smote 0.4507 0.456 0.4773 0.4945 0.509 0.5248 0.5205 0.5165 0.5212
reweight 0.452 0.4763 0.499 0.5178 0.5148 0.523 0.528 0.5312 0.5342

embed-sm 0.4453 0.4495 0.4595 0.4813 0.4895 0.4985 0.507 0.5088 0.5187
em-smote 0.4553 0.4873 0.4935 0.5028 0.5172 0.524 0.5288 0.5268 0.5285

gsm-T 0.449 0.4812 0.4947 0.5013 0.5195 0.5252 0.5333 0.5253 0.537
gsm-O 0.4578 0.483 0.4875 0.5052 0.5242 0.5173 0.526 0.526 0.535

gsm-preT 0.4713 0.4835 0.5048 0.516 0.52 0.5338 0.5282 0.54 0.5442
gsm-preO 0.4718 0.4893 0.4948 0.518 0.5278 0.5367 0.5305 0.5438 0.5338

F1-Score

no 0.5498 0.5542 0.5566 0.564 0.5731 0.5628 0.5702 0.566 0.5681
up 0.5451 0.5458 0.5513 0.5534 0.5588 0.5616 0.5665 0.5609 0.5664

smote 0.5448 0.5503 0.5487 0.5575 0.5607 0.5678 0.5666 0.5663 0.5652
reweight 0.541 0.5509 0.5563 0.5601 0.5691 0.567 0.5693 0.5743 0.5805

embed-sm 0.5444 0.5426 0.5446 0.5493 0.5551 0.5554 0.5598 0.5576 0.5707
em-smote 0.5473 0.5532 0.5555 0.5582 0.5684 0.5677 0.5721 0.5656 0.5681

gsm-T 0.5454 0.552 0.5615 0.5563 0.5685 0.5724 0.5726 0.5714 0.5697
gsm-O 0.5467 0.553 0.5574 0.5572 0.567 0.562 0.5681 0.5681 0.5763

gsm-preT 0.5514 0.5592 0.5649 0.5653 0.5702 0.5728 0.568 0.578 0.5785
gsm-preO 0.5533 0.561 0.5622 0.5705 0.5695 0.5728 0.5747 0.5761 0.5786

AUC

no 0.6614 0.6702 0.6815 0.6987 0.7059 0.6991 0.7069 0.7026 0.7065
up 0.652 0.6622 0.6685 0.6752 0.685 0.6922 0.7019 0.6942 0.7013

smote 0.6576 0.6687 0.6697 0.6849 0.6918 0.7026 0.6988 0.7044 0.7028
reweight 0.6454 0.6792 0.6863 0.6928 0.7033 0.7003 0.7027 0.7066 0.7162

embed-sm 0.6456 0.651 0.6604 0.6698 0.6763 0.6828 0.6891 0.6912 0.7048
em-smote 0.6652 0.6802 0.6904 0.6901 0.7011 0.7044 0.7118 0.7021 0.7064

gsm-T 0.6582 0.6792 0.6837 0.688 0.703 0.7063 0.7038 0.7084 0.7083
gsm-O 0.6618 0.6753 0.6828 0.6883 0.7038 0.6985 0.7044 0.7063 0.7159

gsm-preT 0.6641 0.6803 0.6966 0.699 0.7049 0.7069 0.7086 0.7125 0.7129
gsm-preO 0.6669 0.6851 0.6924 0.705 0.7022 0.7131 0.7051 0.7131 0.7171
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6.5 Variation across datasets

To show the consistency of performance across different datasets, we have shown

the results in Table 6.4 with the test accuracy performance of HetGSMOTE on all

datasets. Here, we make the following observation:

• The HetGSMOTE variants perform comparatively better than the baselines in

most cases across all datasets. Variation in accuracy can be seen across datasets,

since the model performs at different levels on different datasets, irrespective of

the HetGSMOTE framework, which is expected.

Table 6.4: Test ACC vs imbalance ratios (HGNN base model and all datasets)
Dataset Settings 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

IMDb

reweight 0.452 0.4763 0.499 0.5178 0.5148 0.523 0.528 0.5312 0.5342
embed-sm 0.4453 0.4495 0.4595 0.4813 0.4895 0.4985 0.507 0.5088 0.5187
em-smote 0.4553 0.4873 0.4935 0.5028 0.5172 0.524 0.5288 0.5268 0.5285

gsm-T 0.449 0.4812 0.4947 0.5013 0.5195 0.5252 0.5333 0.5253 0.537
gsm-O 0.4578 0.483 0.4875 0.5052 0.5242 0.5173 0.526 0.526 0.535

gsm-preT 0.4713 0.4835 0.5048 0.516 0.52 0.5338 0.5282 0.54 0.5442
gsm-preO 0.4718 0.4893 0.4948 0.518 0.5278 0.5367 0.5305 0.5438 0.5338

AMINER

reweight 0.922 0.949 0.9573 0.959 0.964 0.9623 0.9653 0.9627 0.9607
embed-sm 0.9323 0.9523 0.9623 0.963 0.958 0.9673 0.9597 0.965 0.9627
em-smote 0.9477 0.9563 0.9643 0.962 0.9653 0.962 0.9667 0.964 0.9627

gsm-T 0.9343 0.9583 0.964 0.9657 0.962 0.968 0.9657 0.9657 0.9677
gsm-O 0.9377 0.9597 0.9617 0.9633 0.9657 0.964 0.9613 0.962 0.967

gsm-preT 0.9463 0.9597 0.9617 0.96 0.963 0.966 0.9633 0.9667 0.9657
gsm-preO 0.9513 0.9607 0.9647 0.9657 0.964 0.964 0.967 0.9623 0.9673

Pubmed

reweight 0.1675 0.1681 0.1525 0.1537 0.1581 0.1575 0.1644 0.1562 0.1525
embed-sm 0.1401 0.1494 0.1644 0.1506 0.1581 0.1525 0.1537 0.1531 0.1594
em-smote 0.154 0.1544 0.1569 0.1531 0.1537 0.16 0.1562 0.1456 0.1544

gsm-T 0.1508 0.1512 0.165 0.1469 0.1594 0.1512 0.145 0.1569 0.1544
gsm-O 0.1477 0.1481 0.1563 0.15 0.1575 0.15 0.15 0.1494 0.1554

gsm-preT 0.1635 0.1644 0.1688 0.1544 0.1644 0.1537 0.1512 0.1588 0.1562
gsm-preO 0.17 0.1713 0.1694 0.1512 0.1631 0.15 0.1581 0.1562 0.1569

DBLP

reweight 0.6464 0.6897 0.7354 0.7696 0.7996 0.805 0.7756 0.7914 0.7771
embed-sm 0.6367 0.6826 0.7047 0.7381 0.7666 0.7685 0.7679 0.774 0.7805
em-smote 0.6447 0.6837 0.7154 0.746 0.7637 0.7751 0.7359 0.762 0.7509

gsm-T 0.639 0.6678 0.7518 0.7576 0.7769 0.791 0.7857 0.7882 0.8001
gsm-O 0.6291 0.6567 0.7149 0.7557 0.7593 0.8079 0.7957 0.7924 0.79

gsm-preT 0.6349 0.6927 0.7331 0.7255 0.7691 0.7767 0.7945 0.802 0.8002
gsm-preO 0.6649 0.7136 0.7441 0.7615 0.7606 0.7671 0.7639 0.7841 0.7867
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6.6 Influence of base model

To study how different base models influence performance, we have evaluated the

framework with HAN, MAGNN, and HGNN base models. The results are shown with

test accuracy for the IMDb dataset in Table 6.5. We make the following observations:

• Here, on the IMDb dataset, HAN performed the best among its model counter-

parts. Since it’s known that different models have different capacities to learn

from data, it is expected that the performance will vary across models, which

is visible in the results.

• Within each model, The HetGSMOTE framework, especially gsm-preO, has

performed better than in counterpart in most cases. This shows the impact of

the HetGSMOTE framework, regardless of the base models.

Table 6.5: Test ACC vs imbalance ratio (all base models and IMDb dataset)
Model Settings 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

HAN

reweight 0.452 0.4763 0.499 0.5178 0.5148 0.523 0.528 0.5312 0.5342
embed-sm 0.4453 0.4495 0.4595 0.4813 0.4895 0.4985 0.507 0.5088 0.5187
em-smote 0.4553 0.4873 0.4935 0.5028 0.5172 0.524 0.5288 0.5268 0.5285

gsm-T 0.449 0.4812 0.4947 0.5013 0.5195 0.5252 0.5333 0.5253 0.537
gsm-O 0.4578 0.483 0.4875 0.5052 0.5242 0.5173 0.526 0.526 0.535

gsm-preT 0.4713 0.4835 0.5048 0.516 0.52 0.5338 0.5282 0.54 0.5442
gsm-preO 0.4718 0.4893 0.4948 0.518 0.5278 0.5367 0.5305 0.5438 0.5338

MAGNN

reweight 0.3567 0.348 0.3672 0.4057 0.3383 0.3523 0.3475 0.338 0.3398
embed-sm 0.346 0.3463 0.3482 0.3503 0.3462 0.3385 0.345 0.3422 0.3628
em-smote 0.4298 0.4703 0.4883 0.5008 0.4742 0.497 0.5128 0.4887 0.5038

gsm-T 0.3663 0.3547 0.3515 0.353 0.3615 0.3562 0.3828 0.3632 0.3625
gsm-O 0.3747 0.388 0.3593 0.3637 0.3885 0.3835 0.3668 0.3612 0.3895

gsm-preT 0.4455 0.4805 0.4783 0.4972 0.506 0.518 0.5148 0.5182 0.5163
gsm-preO 0.4537 0.4752 0.489 0.4975 0.5095 0.5252 0.5117 0.5202 0.509

HGNN

reweight 0.4335 0.4396 0.4556 0.4664 0.4885 0.4878 0.508 0.4991 0.5116
embed-sm 0.4346 0.457 0.4658 0.4748 0.5003 0.4936 0.5026 0.5006 0.4948
em-smote 0.4335 0.442 0.4561 0.479 0.4936 0.5013 0.4971 0.4981 0.5011

gsm-T 0.4343 0.438 0.4606 0.475 0.4826 0.4923 0.4921 0.5061 0.5126
gsm-O 0.4311 0.4331 0.4606 0.4713 0.488 0.4918 0.499 0.504 0.5058

gsm-preT 0.4405 0.4571 0.4613 0.4863 0.4911 0.5028 0.5065 0.5001 0.5095
gsm-preO 0.444 0.448 0.476 0.4946 0.5026 0.5078 0.4981 0.507 0.508
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Chapter 7

Summary
7.1 Conclusions

Our findings demonstrate the effectiveness of the HetGSMOTE approach for het-

erogeneous graphs across various datasets and models across various class-imbalance

conditions. Our approach is domain-independent, working on diverse datasets and

surpassing the baselines in the majority of the cases. It is also shown that this frame-

work is capable of handling different base models and, hence, can be further improved

when a new model appears in the domain.

We have also shown the effect of training size and upsampling ratio, where a

higher training size aids performance, whereas too low of an upsampling ratio hinders

performance. We have also shown how the choice of pretraining has helped the model

to exceed the performance. In conclusion, The effect of the HetGSMOTE framework,

regardless of the base model and dataset, has been shown by its superior performance.

7.2 Future Directions

In future experiments, the work can be taken in different directions. For starters,

testing the approach on tasks like link prediction, edge type classification, and node-

representation learning is important for graph-based studies as they also tend to suffer

from class imbalance problems. The approach can also be improved with different

choices of newer models capable of transfer learning or student-teacher models to

improve beyond a simple pretraining framework.
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Appendix A

Machine Learning Glossary
Here is a list of domain-specific terms and their definitions in the context of training

Machine Learning, given in Table form (Tables A.1 and A.2).

Table A.1: Glossary of Machine Learning Terms

Term Definition

Machine Learning A field of artificial intelligence that enables systems to learn
patterns from data and make predictions or decisions without
being explicitly programmed.

Dataset A structured collection of data used for training, validating,
and testing machine learning models.

Labels Known target values or categories assigned to data instances,
used for supervised learning.

Classes The distinct categories or groups into which labeled data
points are classified.

Model A mathematical representation trained on data to perform a
task such as classification or regression.

Neural Network A type of machine learning model composed of layers of inter-
connected nodes that transform input data through learned
weights.

Layers Stacked units in a neural network where computations occur;
typically include input, hidden, and output layers.

MLP Multilayer Perceptron: A fully connected feedforward neural
network consisting of multiple layers used for nonlinear func-
tion approximation.

Encoder A component that transforms input data into a compact or
latent representation, often used in representation learning
tasks.
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A Machine Learning Glossary

Table A.2: Glossary of Machine Learning Terms (continued)

Term Definition

Embedding A vector representation of discrete objects (e.g., nodes, words)
in a continuous space, capturing structural or semantic simi-
larity.

Message Passing A core operation in graph neural networks where nodes ex-
change information with their neighbors to update their rep-
resentations.

Classification A task where the model predicts a discrete label or category
for each input instance.

Regression A task where the model predicts a continuous value for each
input instance.

Training The process of learning patterns in data, for performing a
specific task, by adjusting model parameters to minimize a
loss function.

Pretraining The process of learning general patterns in data before train-
ing for a certain task.

Validation The process of evaluating model performance on held-out data
during training to tune hyperparameters and prevent overfit-
ting.

Testing The final evaluation of a trained model’s performance on a
separate dataset to assess generalization ability.

Loss A measure of the difference between the model’s predictions
and the true values, guiding the learning process.

Backpropagation Process of computing gradients from the loss through the
model.

Optimization The process of minimizing the loss function by updating
model parameters using gradients from backpropagation.

Accuracy The proportion of correctly predicted labels among all predic-
tions. It is often used for node classification tasks.

F1 Score The harmonic mean of precision and recall, providing a
balanced measure of performance, especially in imbalanced
datasets.

AUC (Area Under
the Curve)

A performance metric that evaluates the ability of a model to
distinguish between classes across different thresholds.
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