HetGSMOTE: A Heterogeneous Graph

Oversampling Framework

A thesis Submitted
in Partial Fulfilment of the Requirements
for the Degree of

MASTER OF SCIENCE

by
ADHILSHA A

HBNI Enrollment No.: PHYS11202013003

to the

School of Physical Sciences
National Institute of Science Education and Research
Bhubaneswar

May, 2025

DEDICATION

To those who showed me the path ahead,
to those who lifted me when I bled,
to those who hold me close still near,
and to those who vanished through the years—
you all made me who I am,

and brought this dream to where it stands.

DECLARATION

I hereby declare that I am the sole author of this thesis in partial fulfillment of the
requirements for a postgraduate degree from National Institute of Science Education

and Research (NISER). I authorize NISER to lend this thesis to other institutions or

Signature of the Student

individuals for the purpose of scholarly research.

Date: May 22, 2025

The thesis work reported in the thesis entitled "HetGSMOTE: A Heteroge-
neous Graph Oversampling Framework” was carried out under my supervision,

in the School of Physical Sciences at NISER, Bhubaneswar, India.

Db

(Dr. Subhankar Mishra)
Signature of the thesis supervisor
School: School of Computer Sciences

Date: May 22, 2025

(2 Yo

(Dr. Satyaprasad P Senanayak)
Signature of the thesis supervisor
School: School of Physical Sciences
Date: May 22, 2025

i

Adhil Sha
May 22, 2025

Adhil Sha
May 22, 2025

Adhil Sha
May 22, 2025

ACKNOWLEDGEMENTS

Let me begin by expressing my sincere gratitude to Dr. Subhankar Mishra, my
supervisor, for his unwavering support and valuable insights throughout my research.
[am equally grateful to my guide from SPS, Dr. Satyaprasad P Senanayak, as well
as to the members of my thesis committee, Dr. Aritra Banik and Dr. Anup Kumar
Bhattacharya, for their constructive feedback that greatly improved this work.

Throughout my academic journey at NISER, I have relied on the expertise and
kindness of the faculty and staff from both the School of Physical Sciences and the
School of Computer Sciences. They assisted me with their resources and knowledge
to the best of their abilities, always with a smile that will never leave my heart.

I am deeply grateful to the members of my lab—especially my seniors Jyotirmaya,
Jyothish, Rucha, Rishi, Pankaj, and Hari—for their consistent guidance and encour-
agement. I also extend my heartfelt thanks to my peers and colleagues Deependra,
Aritra, Sagar, and Shithij. Their insightful discussions and steady support have been
invaluable to the journey that brought both me and this thesis to where we are today.

Life, much like this world, has never promised to be fair. The past five years
have been a rollercoaster of a ride, but through every twist and turn, I was never
alone. To my parents, who always had my back; and to my brother, who looked up
to me and gave me a reason to keep striving—I owe more than words can say. To
my cousins and extended family, thank you for standing by me and for filling my life
with unforgettable moments.

To Parvathi, my sister by heart, you have stood beside me for nearly a decade like
a constant anchor to my chaotic soul. To Anagha and Gayathri, my closest friends
with whom I've shared light laughs and tangled thoughts, you two have changed me
for the better in ways I can never truly repay. To Archita, who quietly warmed my
heart with a softer light, you have made my future worth dreaming of. To the Second
floor buddies, especially Shubhay and Tanmay, you guys have given me memories
that make NISER worth remembering.

I don’t expect the path ahead to be any easier, but with all of you by my side and

the lessons I have learned, I am ready to pursue my dream and beyond.

il

ABSTRACT

Graph Neural Networks (GNNs) have been widely used to learn from graph-
structured data, with heterogeneous graphs (HetGs) gaining prominence due to their
ability to represent diverse real-world systems. However, class imbalance—where
some node classes are underrepresented—poses a significant challenge for learning
tasks like node classification on HetGs. This work introduces HetGSMOTE, a novel
oversampling method that adapts SMOTE-based techniques to the heterogeneous
graph setting by incorporating node-type, edge-type, and contextual metapath in-
formation into the oversampling process. HetGSMOTE constructs a content- and
neighbor-type-aggregated embedding space using a base model to generate synthetic
nodes and trains edge generators for each node type to model relational structures,
addressing key challenges in imbalanced learning on HetGs. Extensive experiments on
benchmark datasets and across various base models demonstrate that HetGSMOTE
consistently outperforms baseline methods in mitigating class imbalance and boost-
ing classification accuracy, particularly in extreme imbalance cases, while maintaining

broad adaptability to different base models.

v

Contents

1 Introduction
2 Background
3 Related Works
4 Methodology
4.1 Problem Statement
4.2 HetGSMOTE framework
4.2.1 Encoder
4.2.2 SMOTE
4.2.3 Edge Generator
424 Classifier
4.3 DBaseline settings and proposed Settings
5 Experiments
5.1 Optimization
5.2 Datasets
5.3 Experimental Settings:o Lo
5.4 Evaluation Metric
5.5 Configuration
6 Results and Discussion
6.1 Influence of Up-sampling Ratio
6.2 Influence of Training size
6.3 Influence of pre-Training,
6.4 Performance of HetGSMOTE
6.5 Variation across datasets
6.6 Influence of base model
7 Summary
7.1 Conclusions
7.2 Future Directions
References

Appendix A Machine Learning Glossary

List of Figures

2.1

4.1
6.1

[Mustration of homogeneous and heterogeneous graphs with node im-
balance 5

HetGSMOTE Pipeline 10

Comparison of the effect of pretraining (HGNN base model and IMDb
dataset) 25

vi

List of Tables

4.1 Overview of Baseline settings and Proposed Settings. 16
5.1 Information about datasets (labeled node type are marked with *) . . 18
6.1 Test ACC vs Upsampling Ratio (HGNN base model and IMDb dataset) 23
6.2 Test ACC vs training size (HGNN base model and DBLP dataset) . . 24
6.3 Performance vs. imbalance ratio (HAN base model and IMDb dataset) 26
6.4 Test ACC vs imbalance ratios (HGNN base model and all datasets) . 27
6.5 Test ACC vs imbalance ratio (all base models and IMDb dataset) . . 28
A.1 Glossary of Machine Learning Terms 34
A.2 Glossary of Machine Learning Terms (continued) 35

vil

Chapter 1

Introduction

Graph-based learning and Graph Neural Networks (GNNs) have garnered significant
attention for their capacity to model intricate relationships and dependencies within
structured data [2, 3]. Among the graph-based structures, heterogeneous graphs
(HetG) are ubiquitous in real-world scenarios representing a wide range of real-life
data. These include bibliographic networks, social networks, recommender systems
[4, 5], etc. In HetGs, entities and relations are of multiple types highlighting complex
relationships, with nodes carrying both structured and unstructured content. Con-
sequently, downstream tasks like node classification [6, 7] and link prediction [8, 9]
hold significant importance. While Heterogeneous Graph Neural Networks (HGNNs)
[6] excel in node classification tasks, they are typically optimized for balanced class
distributions. However, in many real-world applications, certain classes may have sig-
nificantly fewer instances than others, leading to suboptimal performance when using
traditional baseline models, calling for imbalanced learning techniques like oversam-
pling on HetGs.

This work proposes HetGSMOTE, a novel oversampling approach in heteroge-
neous graphs, which leverages Synthetic Minority Oversampling Techniques (SMOTE)
[10] on the representation matrices of the nodes to mitigate the class imbalance prob-
lem. SMOTE has proven effective in balancing class distributions in various do-
mains, including homogeneous graphs [11], but its direct application to heterogeneous
graph data presents unique challenges, such as requiring node-type, edge-type, and

metapath-based contextual information. To overcome these challenges, Het GSMOTE

1 Introduction

extends the GraphSMOTE [11] approach proposed for homogeneous graphs to het-
erogeneous graphs. It constructs a content-aggregated and neighbor-type-aggregated
embedding space that encodes node similarities, facilitating the generation of syn-
thetic samples that preserve the contextual relationships within the graph. Simulta-
neously, edge generators for different node types are trained to model the relational
information between nodes, ensuring that the synthesized samples retain essential
structural characteristics. This way, HetGSMOTE handles the first two of the three

required criteria for SMOTE-based oversampling-:

1. Generation of synthetic samples for increasing the diversity and reducing inter-

class imbalance.

2. Oversampling in the safe regions of the embedding space, i.e., source samples

less prone to generating noisy samples [12].

3. Oversampling on difficult-to-classify samples to overcome the intra-class imbal-

ance [13, 14].

After the aggregation step, the related nodes are in closer clusters than less related
nodes due to having similar neighborhoods, thereby producing safer spaces for over-

sampling via SMOTE. The contributions are-:

1. Studying the class imbalance problem in heterogeneous graphs, which has wide

real-life implications.

2. Extending the GraphSMOTE oversampling approach to the heterogeneous graph

with our novel Het GSMOTE strategy.

3. Demonstrating the effectiveness of our approach through experiments conducted
across diverse settings and datasets, showcasing its superior performance com-

pared to baseline methods.

1 Introduction

Chapter 2 defines and explains the background and terms related to the context
of the paper. The related works are given in Chapter 3, and the Methodology is given
in Chapter 4, which proposes the HetGSMOTE framework. The experiments with
related details can be found in Chapter 5 followed by the results and discussions in

Chapter 6. Chapter 7 summarizes the work with conclusions and future directions.

Chapter 2

Background
A graph, G(V, E), is a mathematical structure that represents the relationship be-
tween objects. It is made up of wertices (or nodes), which denotes the individual
objects, while edges are the connections that link pairs of vertices. Each graph’s
structure helps reveal patterns and insights about how components are connected.
Homogeneous graphs consist of a single type of node and edge, such as social net-
works with only user nodes and friendship links. In contrast, heterogeneous graphs
contain multiple types of nodes and/or edges, enabling the capture of richer semantic
relationships—for example, bibliographic networks with papers, authors, and venues.

Graph Neural Networks (GNNs) have proven highly effective in analyzing graph-
structured data, with applications spanning from social network analysis to molecular
biology and recommendation systems. By leveraging the relational information be-
tween nodes, GNNs are capable of learning meaningful representations that capture
both local and global graph properties.

General GNNs update the state (or embedding) of each node in a graph based on

the states of its neighbors [1]. The following equation characterizes them:
h) = UPDATE(A"Y, AGGREGATE({{R{" : ueN(v)}})) (2.1)

The AGGREGATE function collects information from the neighbors, and the UP-
DATE function updates the node embedding using aggregated information. This
information can be used for performing node-level, edge-level, or graph-level tasks,
such as classification or regression. Examples include user-bot prediction, friendship

recommendation, and protein property prediction [4].

4

2 Background

O Type 1

. Majority class

. Minority class

Imbalanced Imbalanced
Homogeneous Graph Heterogeneous Graph

Figure 2.1: Illustration of homogeneous and heterogeneous graphs with node imbal-
ance

In the context of node classification and graph datasets, a common challenge is
class imbalance, where certain node classes are underrepresented. These underrepre-
sented classes are referred to as the minority class. This imbalance can bias learning
algorithms toward majority classes, reducing the performance on minority classes.
The issue is particularly pronounced in heterogeneous graphs, where diverse struc-
tures and relations further complicate representation learning. Figure 2.1 illustrates
homogeneous and heterogeneous graphs, with the presence of node imbalance.

To address class imbalance in node classification tasks, oversampling techniques
are commonly employed to increase the representation of minority classes. In graph
learning, oversampling refers to the generation or duplication of synthetic node rep-
resentations from underrepresented classes to overcome the class imbalance during
training. Unlike traditional settings, oversampling in graphs must consider not only
the feature space but also the structural and relational context of each node, making
the design of effective oversampling strategies particularly challenging in heteroge-

neous graphs where node types and relationships vary.

2 Background

The Synthetic Minority Over-sampling Technique (SMOTE) [10] is one of the
widely used methods among them. Rather than simply duplicating existing samples,
SMOTE generates new synthetic samples by interpolating between the representation
vectors of selected minority class samples. By using SMOTE in a feature space where
content and neighborhood aggregation are accounted for, SMOTE can be adapted
to Graph datasets. This is the intuition behind GraphSMOTE [11] and our work

HetGSMOTE. A glossary of Machine Learning terms is given in Appendix A.

Chapter 3
Related Works

Class imbalance, where one class significantly outnumbers another, leads to biased
models and poor generalization, evident in tasks such as fraud detection, rare disease
identification, and bot recognition. Addressing this issue involves algorithm-level,
data-level, and hybrid strategies [11]. Data-level methods, such as oversampling and
data augmentation, increase minority class samples. Algorithm-level approaches in-
clude cost-sensitive techniques, ensemble learning, and threshold adjustments [16].
Hybrid methods combine these strategies, e.g., classifier-specific models [15].
Oversampling generates synthetic minority samples with methods like SMOTE,
which interpolates between samples. Variants of SMOTE have evolved through vari-
ous enhancements aimed at improving data representation. Some methods including
DBSMOTE [27], and k-means SMOTE [14], focus on generating synthetic samples
within the minority class space with smaller scales. Methods like borderline-SMOTE
[12], ADASYN [13], and Adaptive-SMOTE [24] also generates samples in difficult
regions within the minority class. These improvements help mitigate overgeneraliza-
tion by filtering out potential noise or by strategically generating additional samples
within specific regions of the minority class. A newer technique, NaNG-SMOTE [25],
addresses the same obstacles by using a natural neighborhood graph and subgraph
cores of the minority class to generate synthetic samples while filtering noise based on
edge characteristics. Oversampling has proven effective in numerous machine learn-
ing domains, addressing the issue of limited minority data [15] and improving model

performance.

3 Related Works

HetG learning has evolved from manual feature engineering to representation
learning, broadly categorized into shallow and deep models [17]. Shallow models
include random walk-based strategies like metapath2vec, which use metapath-guided
random walks, and decomposition methods such as HERec [5]. DeepWalk introduced
SkipGram embeddings for node co-occurrence probabilities. Variants like Spacey,
JUST, and HHNE [4] add enhancements like jump-stay strategies and heterogeneous
walks. Deep models leverage Heterogeneous Graph Neural Networks (HGNNs), with
unsupervised methods like HetGNN [6], and semi-supervised approaches like HAN [7]
using attention mechanisms. Advanced HGNNs; like MAGNN and HGT [19], refine
intra- and inter-metapath aggregations. Techniques such as encoder-decoder models
[4] and adversarial frameworks like GraphGAN [20] further enrich HetG represen-
tation learning. Oversampling techniques for graph data, like GraphSMOTE [11],
address the class imbalance in homogeneous graphs by generating synthetic nodes
and connections. Other methods, such as GraphMixup [23] and Graph-DAO [22], use
latent space sampling and semantic relations. Despite progress, SMOTE has found
limited applications in graph-based learning. For HetGs, there are even fewer tech-
niques, such as FincGAN [21], an adversarial GAN-based approach, and BARE[26],
which leverages student-teacher networks to distill knowledge from real nodes for
improved learning. This motivates our work on the extension of GraphSMOTE to

heterogeneous graphs.

Chapter 4

Methodology
4.1 Problem Statement

Consider a Heterogeneous Graph (HetG), denoted as G = (V, A, F). Here, V =
{v1,...,v,} is the node set, and V; € V signifies its subset containing nodes of type
t. A is the set of adjancency matrices, where A;, € A denotes the adjancency matrix
between nodes of types ¢t and u. Ay, € R™*™ where n; and n, are the numbers of
nodes of types t and u, respectively. Finally, F' is the set of attribute matrices, where
F! € F represents the i-th attribute matrix for nodes of type t. F! € R™*4 where d
is the embedding dimension. Specifically, F}[v;,:] € R'*? is a row vector representing
the i-th attribute embedding for the node v; of type t. Class information for nodes of
type t is denoted by Y € R™. In most real-world scenarios, only a subset of Y; may be
available during training, denoted by Y/ € Y; for the labeled subset of nodes V/ € V;.
The subset is usually small. If there exist k£ classes, represented as ¢y, c¢s,...,c; and
|c;| is the number of samples associated with i-th class, we can measure the degree of

class imbalance using the imbalance ratio ([), defined as:

|Cz'|

(IR), = (4.1)

max; (|¢;)
where max; |¢;| is the size of the largest class. A perfectly balanced dataset, where
each class has the same number of nodes, corresponds to (IR), = 1 for all classes.
Conversely, lower (IR); values indicate a higher class imbalance, with some classes
having significantly fewer nodes than others.

In this study, a semi-supervised approach is employed to classify nodes on diverse

4 Methodology

I Upsampling / SMOTE '

o)
A
ENCODER
Node Features Type-specific |, Content-aggregated Type-based
content aggregation Node Features neighborhood aggregation
T
Edge Generator ¢ Modified Node features | «— SMOTE on < Neighbor-aggregated
(edge loss) Minority class samples Node Features

Modified Adjacency > Classifier Output
matrices (classification loss)

Figure 4.1: HetGSMOTE Pipeline

graphs in a transductive setting. The entire graph is available for training and testing,
with only a few nodes labeled. These selected nodes are divided into different sets for
training, validation, and testing during the learning process. Given the heterogeneous
graph G with an imbalanced class distribution and a smaller subset of nodes V; with
labels, our objective is to use the HetGSMOTE framework to generate synthetic
nodes, V;*", and synthetic edges, A}, till the class imbalance has been overcome.

Hence, we will be able to train a node classifier f that performs well for both the

majority and minority classes, that is, f(G) — Y.

4.2 HetGSMOTE framework

As shown in Fig. 4.1, the pipeline of HetGSMOTE consists of four parts-:

Encoder

SMOTE-based oversampling

Edge Generators

Classifier

10

4 Methodology

4.2.1 Encoder

The Encoder is a feature extractor based on models like HGNN [6], MAGNN [19],
and HAN [7] that operate on Heterogeneous Graphs. The encoder is used to generate
learned embeddings for the different types of nodes of the heterogeneous graphs,
followed by the content aggregation and type-specific neighbor aggregation, specific
to the base model. The output of this layer is node feature vectors in the embedding
space that are then used for oversampling via SMOTE.

Content Aggregation: In this layer, the attribute matrix for each node is con-
catenated along the embedding dimension and then passed through a linear layer
and nonlinearity to reduce its dimension back to the original embedding dimension,
thereby combining the contextual information from all generated attributes of the

nodes.
Ft[vjv :] =0 [Wl) (@ F;t[UJW])] (4'2)

where F is the 1" attribute matrix for the node v;, n is the total number of attribute
matrices, F"' is the content aggregated matrix, W is the weight matrix, ¢ the node
type and o refers to activation function like ReLLU.

Type Based Neighbor Aggregator: Here, the content-based aggregated representa-
tion matrix for each node type is concatenated with the neighbor type-based aggre-
gated feature matrix and then reduced using a linear layer. Firstly, a list of frequently
occurring neighbor nodes along different random walks is extracted for each node. The
top k frequently occurring neighbor nodes of each type are taken from the random
walks and given the same importance as direct edges, giving a total of t* adjacency
matrices where ¢ is the number of node types.

For each node, the neighbor type-based aggregations are carried out by extract-

ing the embedding of the neighbor nodes using the corresponding adjacency matrix,

11

4 Methodology

according to the base model. These type-based neighbor aggregated matrices G; are
later combined using attention weights. This final aggregated matrix is concatenated
with the node’s content aggregated matrix and reduced using a linear layer. The

equations are:

X',] = F'lv;, 1] @Y ol G'[vy, 1] (4.3)
G'v;,] |Nt(”a‘>’veNZt(vj) (W - (F'[v, 1)) (4.4)

where X' is the final embedding matrix for nodes of type ¢, N is the neighbor set
of type t for the node, and af]j are the attention weights for combining neighbor

aggregated matrices GG;. The attention weights, af}j, are given by:

oW (G, @ Fluy,) (4.5)
5T T et xD(@(Ws - (G, @ F'o, 1)) |

where o is the LeakyReLU activation function. The given neighborhood aggregation
in the equation 4.4 is for for HGNN model. Similarly, other base models, HAN and
MAGNN, can also be used.

4.2.2 SMOTE

After projecting the nodes into the embedding space, some samples are selected ran-
domly from the minority class of the training set to oversample via SMOTE. SMOTE
generates synthetic nodes in the minority class by interpolating between nearest neigh-
bor samples the same class. For a chosen minority node, v;, with label Y, and let its
nearest neighbor from the same class be denoted by NN(v;). This NN(v;) is found by
calculating the Euclidean distances between v; and other nodes of the minority class

in the embedding space, as shown below.

NN(v;) = arg miélHXt[vj, = X', ||, st. Y, =Y, (4.6)
veVt

12

4 Methodology

Using this nearest neighbor, synthetic nodes that inherit the same label as the
source nodes can be generated. The synthetic node embeddings X! (s implies syn-
thetic) is generated via interpolation such that it lies in the vicinity of the source

nodes, that is, on the line joining the two.
Xilvy,] = (1 =7) - X[NN(vy),:] + 7 - X'[vy,1] (4.7)

where 7 is a random number such that r € [0,1]. New nodes are generated until
the imbalance is removed. The newly generated samples, belonging to the objective
synthetic node set V;>Y", are appended to the original feature matrix. Subsequently,
the adjacency matrices for the augmented graph Ay,, where u represents any arbitrary
node type, are inherited from the adjacency matrices of the original graph AY .

By incorporating the encoder layer before oversampling, GraphSMOTE ensures
that the generated samples are less prone to being noisy. This methodology stems
from the observation that, following the aggregation phase, nodes belonging to the
same class tend to have embeddings that are closer in the embedding space since
they share similar neighbors. This facilitates the clustering of source nodes, defining
distinct decision boundaries between classes. As a result, the oversampling process
generates samples within these closely clustered regions, contributing to the tech-

nique’s effectiveness.

4.2.3 Edge Generator

Since the synthetic nodes are isolated from the graph, they may lack the essential
relational information in their encoding. Hence, an edge generator neural network
model generates the edges for these synthetic nodes. The edge generator is trained
to reconstruct the adjacency matrix for real nodes using their node representations,

which can later be used for effective prediction of the edge between synthetic nodes.

13

4 Methodology

The newly generated adjacency lists for each synthetic node are appended to the
original matrix A% . The generator uses a vanilla design for simplicity, using the
weighted inner product of the feature embedding of the respective node types between

which the edges are to be generated.
A\tu = U(Xt Wi X")© Ap (4.8)

where Xtu is the predicted adjacency matrix between node type ¢t and u for the
augmented graph and o is the sigmoid function. To facilitate learning, the adjacency
matrix is element-wise multiplied (®) by the inherited adjacency matrix from the
oversampling step Ay, to remove the far unrelated edges from being learned. Separate
generators are trained for edges between the different combinations of edge types. The

edge Generator is trained using the loss function given by:
Lo= 1D, — 45,12 (4.9)
u,t

where A\gu refers to the predicted adjacency matrix for the real nodes, i.e., a graph
without synthetic nodes.

Two strategies [11] are employed with the edge generator to incorporate predicted
edges for synthetic nodes into the augmented adjacency matrix. In the first strategy,
a threshold 7 (set to 0.5) is applied on the predicted synthetic edges, as given in
equation (4.10). Here, the generator is optimized solely for the edge reconstruction

task.

1, if (/Alt)ij 21
Ay =1 wii =1 4.10
(Au)is {O, otherwise. (4.10)

Here, A}, is the final adjacency matrix where new synthetic nodes and edges are

inserted into A? , which is then sent to the classifier. For the second strategy, we

tu?

keep the synthetic edges as soft edges instead of binary ones:

(AL)ij = (A\tu)ij (4.11)

14

4 Methodology

In this scenario, gradients with respect to A}, can be backpropagated from the classi-
fier. Consequently, both edge prediction loss and node classification loss can be used

to optimize the edge generator.

4.2.4 Classifier

A simple GNN block is used as a classifier for the framework. It contains a heteroge-
neous neighbor aggregator layer similar to the one used in the encoder. This gives us
freshly aggregated synthetic node embeddings with their relational information using
the predicted edges of the synthetic nodes from the edge generator step. The final

embedding is passed through an MLP head for classification.

P, = o(MLP(X[v;,])) (4.12)

J

where P, is the prediction for node v; with fresh embedding X', and o is softmax
function. The classifier module uses the cross-entropy loss given by:
Las= Y Y [1(Y,, ==c)-log(P,)] (4.13)
v;EV! ¢
where Y, is the true class of node v; in the oversampled set V', and P, is the
predicted probability of node v; belonging to class c. For evaluation, the class with

the highest probability is taken as the predicted class, Y, for node v:

Y, = arg max P,. (4.14)

4.3 Baseline settings and proposed Settings

For the purpose of the study, some baseline oversampling techniques will be compared
against various proposed settings based on the Het GSMOTE pipeline in the previous

section. These different experimental settings and baselines are listed in Table 4.1.

15

4 Methodology

Table 4.1: Overview of Baseline settings and Proposed Settings

Setting Description

no Original datasets without oversampling.

up Upsampling by duplicating source nodes. Synthetic node adjacency list:
Apfvj,:] = AP, v, 1]

smote SMOTE on raw embedding space post-content aggregation. Synthetic node
adjacency list: Ay [v;,:] = min(1, AP, [v1,:] + AY,[v2,:])

reweight Cost-sensitive approach adding higher weight to the loss function for minor-
ity classes.

embed-sm SMOTE applied after neighbor aggregation, without edge generator. As-
sumes sufficient relational information is transferred post-interpolation.

em-smote SMOTE after neighbor aggregation with an inherited adjacency matrix,
showing edge generator impact.

gsmT HetGSMOTE variant with edge generator trained only on edge loss.

gsmO HetGSMOTE variant with edge generator trained on both edge loss and
classification loss.

gsm-preT HetGSMOTE with pre-trained edge generator and encoder on edge predic-
tion task, fine-tuned on edge loss.

gsm-preO Similar to gsm-preT, but edge generator fine-tuned on both edge loss and
classification loss.

Among the proposed settings, we have chosen to perform pretraining of the En-
coder and Edge Generator on edge prediction task in some settings (settings with
‘pre’) to study how models’ prior knowledge of graph structure helps the framework.
Following the equation (4.10), the ‘T’-type setting trains the edge generator using
only the edge prediction loss. In contrast, the ‘O’-type setting uses both edge predic-
tion and classification losses to train or fine-tune the edge generators, as motivated by
the soft synthetic edge formulation in Equation (4.11). The effect of these different

settings is studied later.

16

Chapter 5

Experiments
5.1 Optimization

The optimization objective for HetGSMOTE involves the optimization of weights
for the encoder, edge generator, and classifier. As discussed before, we have two
loss functions: the edge loss (L) from the edge generator and the classification loss
(Las) from the classifier. They are combined as L = A - L. + Lys, where A is a
hyperparameter that controls the contribution from the different tasks. The resulting

objective function of HetGSMOTE is the same as for GraphSMOTE:
min(Les + A - L) (5.1)
0,0,

where 0, ¢, and ¢ are the parameters from the encoder, edge generator, and node
classifier, respectively. As discussed before in Section 4.3, we are also pretraining the

encoder and edge generator using L., in some settings.

5.2 Datasets

This work uses heterogeneous datasets of various sizes to show the domain indepen-
dence of our method. These include AMiner A-II and DBLP bibliographic datasets,

movie collaboration-based IMDb, and biomedical PubMed datasets.

17

b Fxperiments

Table 5.1: Information about datasets (labeled node type are marked with *)

Dataset Nodes Edges Labels
author*: 20171 author-paper: 42379 Classes: 4
AMiner-AlIl paper: 13250 paper-paper: 14583 Minority: 3
venue: 18 paper-venue: 13250
movies*: 4666 movie-actor: 13990 Classes: 3
IMDb directors: 2271 movie-director: 4666 Minority: 2
actors: 5845
paper®: 14328 author-paper: 19645 Classes: 4
DBLP author: 4057 paper-term: 85810 Minority: 3
term: 7723 paper-conference: 14328
conference: 20
nodes: 63109 edges: 244986 Classes: 8
PubMed 4 types 10 types Minority: 6

AMiner-AIl [6]: This is an academic dataset that includes paper publications
in top venues related to artificial intelligence and data science from year 2006 to
2015. Each paper contains bibliographic content information such as 128-dimensional
title embedding and a 128-dimensional abstract embedding. The author and venue
attributes are extracted from the random walks in the graph using Par2Vec [18].

IMDD [7]: This is a subset of the Internet Movie Database (IMDB) dataset
collected from [7]. This is a movie-based dataset where movies can belong to one of
the three classes (action, comedy, drama) according to their genre. Their features
are derived from the representation words of the plot keywords, a 128-dimensional
embedding. The attributes of other nodes are determined from the random walks
using Par2Vec [18].

DBLP[19]: This is a subset of the DBLP computer science bibliography website
dataset collected from [19] containing bibliographic information for four node types

with corresponding binary attributes of 256 dimensions. The representation words of

18

b Fxperiments

their paper keywords describe the author node’s features.

PubMed [8]: This is bio-medical data describing relations between genes, dis-
eases, chemicals, and species with corresponding attributes of 200 dimensions each.
The links include gene-gene interactions, gene-disease associations, chemical-species

relationships, etc. There are eight target labels for the disease nodes.

5.3 Experimental Settings:

To compare the performance of the methods, the baseline oversampling methods and
HetGSMOTE are compared under various settings. These different experimental
settings and baselines were listed in Table 4.1. We have both different edge loss
variants as well as pretraining variants among these proposed variants, which will be
studied later.

The experiments were conducted with HetGSMOTE with three base models:
HGNN, HAN, and MAGNN. These models were evaluated in combination with 4
datasets: AMiner-AIl, IMDb, DBLP, and Pubmed with different imbalance ratios

ranging from 0.1 to 0.9 in steps of 0.1.

5.4 Evaluation Metric

In this study, I use three evaluation metrics for the imbalanced classification problem
as used in GraphSMOTE. They are accuracy (ACC), mean AUC-ROC score (AUC),
and mean F-1 score (F1).

Accuracy is calculated as:

Correct Predictions
Total Predictions

Accuracy = (5.2)

Accuracy measures the proportion of nodes that are correctly classified. While it

can be misleading in imbalanced scenarios due to its insensitivity to class distribution,

19

b Fxperiments

it remains useful in evaluating model performance after class imbalance has been
addressed, such as through oversampling.

F1-Score is calculated, for each class, as:

Precision - Recall

F1=2. 5.3
Precision + Recall (5.3)
where,
TP TP
Precision = ———. Recall = ———
recision TP = 7P’ eca TP + PN

Here, TP (True Positives) is the number of nodes that are correctly predicted as
belonging to the class, FP (False Positives) is the number of nodes that are incorrectly
predicted as belonging to the class, and FN (False Negatives) is the number of nodes
from the class that was incorrectly predicted. A high F1 score reflects a good balance
between precision and recall, meaning that the model is efficient in identifying positive
cases while minimizing false positives and false negatives.

The AUC score, for each class, is calculated as:

1
AUC:/ TPR(FPR) d(FPR) (5.4)
0
where,
TP FP
TPR=——, FPR=———
R TP + FN’ R FP+ TN

Here, TPR (True Positive Rate) and FPR (False Positive Rate) are calculated as
given above, where TN (True Negatives) is the number of nodes that are correctly
predicted as not belonging to the class. AUC score tells us about the model’s ability
to rank a randomly selected positive example higher, compared to a randomly selected
negative one.

Both AUC and F1 are non-weighted averaged over all classes to exhibit their
performance over minority classes better. The threshold for the Fl-score is allowed

to be adaptively adjusted to give the best results for comparative study.

20

b Fxperiments

5.5 Configuration

All experiments have been done on a 64-bit system with Nvidia GPU (A100 80GB
PCle) and ADAM optimization. Three learning rates were tested and set on le-4
for all the datasets and models as per the performance with the weight decay 5e-4.
The hyperparameter A is set to le-6 for gsm-preO and gsmO settings, whereas it
was set to 10 for others. The models are trained for 200 epochs since convergence
occurred around 120-160. The embedding dimension was taken between 128 and 256,
depending on the specific dataset and its attributes. The evaluation of each of the
baselines and settings was done 10 times on 10 training subsets for reducing bias, with
defined seeds for reproducibility, and the average results are presented for different

imbalance ratios, up-sampling ratios, and training sizes of the majority class.

21

Chapter 6

Results and Discussion

Since the results were obtained across all base models, datasets, and imbalance ratios
with 3 different metrics, the subsequent sections show the most significant results
among each choice depending on the context of evaluation. Due to the limited space,
the results shown here only contain the mean metrics across 10 training subsets as
mentioned before. Bold values indicate the highest and underline indicate the second
highest among its counterparts in each imbalance-ratio/ upsampling-ratio/training

size, depending on the results.

6.1 Influence of Up-sampling Ratio

The upsampling ratio defines the fractional increase in minority samples to overcome
the imbalance. An upsampling ratio of 1 implies the minority size was doubled by
oversampling. Experiments with the upsampling ratio highlight the learning curve of
our oversampling technique in different oversampling stages and the overgeneration
problem when too many synthetic nodes are generated or overcompensated. In the
experiments, the upsampling ratio scale is varied as [0.2,1.2] in 0.2 steps to obtain
results for both high and low-ratio cases while keeping the imbalance ratio to 0.5. The
results were obtained from HetGMOTE with HGNN base model on IMDb dataset

and are tabulated in Table 6.1. We make the following observation from the table:

e HetGSMOTE variants show a similar trend where gsm-preO outperforms all
the baselines regularly from the 0.6 ratio threshold in the ACC metric, as high-

lighted in the table. This shows that the generated node samples have an impact

22

6 Results and Discussion

on the performance without fail.

e For lower ratios, reweight, smote, and embed-sm give better results in 3 out of 8
cases. Baseline em-smote performing better might indicate the less importance
of the edge generators when synthetic samples are low, which can affect the

classification negatively compared to simpler oversampling.

e Another trend involves the decrease in the performance of 3 out of 4 proposed
approaches as we go from 1.0 to 1.2, likely due to the overgeneration of synthetic

samples, which affects the embedding quality.

Table 6.1: Test ACC vs Upsampling Ratio (HGNN base model and IMDb dataset)

Setting 0.2 0.4 0.6 0.8 1.0 1.2

no 0.5047 0.4956 0.5054 0.5011 0.5047 0.5091
up 0.5001 0.5013 0.505 0.504 0.4987 0.5092
smote 0.5066 0.4998 0.504 0.4976 0.5021 0.5045

reweight 0.4997 0.5011 0.5038 0.5031 0.4996 0.4997
embed-sm 0.5031 0.5000 0.4963 0.5056 0.5022 0.4963
em-smote 0.4951 0.5078 0.4976 0.5021 0.5033 0.4944

gsm-T' 0.5002 0.5015 0.4926 0.4944 0.501 0.4917
gsm-0O 0.5012 0.4921 0.5010 0.5010 0.4946 0.4900
gsm-preT" 0.5018 0.5062 0.5060 0.5025 0.5095 0.5060
gsm-preO 0.5035 0.5065 0.5062 0.5084 0.5090 0.5148

6.2 Influence of Training size

Here, Training size refers to the maximum size of a minority class used for training.
This experiment evaluates how well HetGSMOTE-based approaches perform on a
small labeled training subset of the graph that emulates real-life scenarios and also
in this semi-supervised setting. In the experiments, the training size varies between

numbers less than 150 depending on the maximum size of available labeled nodes for

23

6 Results and Discussion

each class in each dataset. The validation and testing are taken to be higher than
the training size. The training size more or less goes from extremely small (5%) of
total size to small (10%) of the total size. The imbalance ratio and upsampling ratio
are taken to be 0.5 and ’balanced,’” respectively. The experiment was conducted on
the DBLP dataset, where the largest minority class was available for this study. The

results are tabulated in Table 6.2. We make the following observation from the table:

e HetGSMOTE variants show a similar trend where these variants perform weakly
at extremely small training sizes, 50 and 80, and are outperformed by reweight.
It may be because of the possible overcompensation of synthetic nodes by over-
sampling compared to the total number of target nodes, which might introduce

noise in the embedding space.

e The performance of HetGSMOTE tends to improve as the training size in-
creases and surpasses the rest of the baselines after the aforementioned thresh-

olds (above 80 in this case).

Table 6.2: Test ACC vs training size (HGNN base model and DBLP dataset)

Settings | 50 80 100 150

no 0.7692 0.8092 0.8067 0.8213
up 0.7581 0.8115 0.8087 0.8351
smote 0.7575 0.7917 0.7991 0.8295

reweight | 0.7908 0.8184 0.8222 (0.8422
embed-sm | 0.7335 0.8079 0.7989 0.8237
em-smote | 0.7715 0.8073 0.8097 0.8225

gsm-T 0.732 0.751 0.7787 0.7968
gsm-0 0.7861 0.7871 0.8254 0.8417
gsm-preT | 0.7746 0.8126 0.8168 0.8327
gsm-preO | 0.7526 0.8082 0.8128 0.8457

24

6 Results and Discussion

6.3 Influence of pre-Training

As mentioned before in Section 4.3, the pre-trained settings gsm-preT and gsm-preO
had encoders and edge generator retained on edge-prediction task and fine-tuned
on different losses. Figure 6.1 shows the evolution of the performance of different
settings across training epochs. where the pre-trained settings and their counterparts
are compared, the performance for the pre-trained models was higher compared to
the normal settings, gsm-T, and gsm-O. This shows that pretraining gives an edge to
the model in identifying graph Structures before the actual task of Node classification

takes place.

F1 vs Epoch for '0" and 'T" type settings

& smT
—e— 0=mO

0.8

07

F1-5core

=
m

035

04

P 50 s 100 125 150 175 200
Epoch

Figure 6.1: Comparison of the effect of pretraining (HGNN base model and IMDb
dataset)

6.4 Performance of HetGSMOTE

To show the superior performance of the Het GSMOTE framework, we show its per-
formance with the HAN base model on IMDDb datasets. The results are tabulated in

Table 6.3 for all metrics. Here, we make the following observations:

25

6 Results and Discussion

e HetGSMOTE variants have shown higher performance than their counterparts

in most cases across all three metrics, showcasing its superiority over similar

oversampling techniques.

e On accuracy metric, a reliable metric in the classification task, we can see that

gsm-preO has performed the best among the proposed settings. The same is

visible across other metrics too.

Table 6.3: Performance vs. imbalance ratio (HAN base model and IMDDb dataset)

Metric Setting 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
no 0.4473 0.4575 0.4787 0.4997 0.5167 0.515 0.525 0.5162 0.518

up 0.4428 0.4563 0.4718 0.4852 0.5108 0.5083 0.5203 0.5198 0.5233

smote 0.4507 0.456 0.4773 0.4945 0.509 0.5248 0.5205 0.5165 0.5212

reweight 0.452 0.4763 0.499 0.5178 0.5148 0.523 0.528 0.5312 0.5342

ACC embed-sm 0.4453 0.4495 0.4595 0.4813 0.4895 0.4985 0.507 0.5088 0.5187
em-smote 0.4553 0.4873 0.4935 0.5028 0.5172 0.524 0.5288 0.5268 0.5285

gsm-T 0.449 0.4812 0.4947 0.5013 0.5195 0.5252 0.5333 0.5253 0.537

gsm-0 0.4578 0.483 0.4875 0.5052 0.5242 0.5173 0.526 0.526 0.535

gsm-preT 0.4713 0.4835 0.5048 0.516 0.52 0.5338 0.5282 0.54 0.5442

gsm-preO 0.4718 0.4893 0.4948 0.518 0.5278 0.5367 0.5305 0.5438 0.5338

no 0.5498 0.5542 0.5566 0.564 0.5731 0.5628 0.5702 0.566 0.5681

up 0.5451 0.5458 0.5513 0.5534 0.5588 0.5616 0.5665 0.5609 0.5664

smote 0.5448 0.5503 0.5487 0.5575 0.5607 0.5678 0.5666 0.5663 0.5652

reweight 0.541 0.5509 0.5563 0.5601 0.5691 0.567 0.5693 0.5743 0.5805

Fl-Score embed-sm 0.5444 0.5426 0.5446 0.5493 0.5551 0.5554 0.5598 0.5576 0.5707
em-smote 0.5473 0.5532 0.5555 0.5582 0.5684 0.5677 0.5721 0.5656 0.5681

gsm-T 0.5454 0.552 0.5615 0.5563 0.5685 0.5724 0.5726 0.5714 0.5697

gsm-0 0.5467 0.553 0.5574 0.5572 0.567 0.562 0.5681 0.5681 0.5763

gsm-preT 0.5514 0.5592 0.5649 0.5653 0.5702 0.5728 0.568 0.578 0.5785

gsm-preO 0.5533 0.561 0.5622 0.5705 0.5695 0.5728 0.5747 0.5761 0.5786

no 0.6614 0.6702 0.6815 0.6987 0.7059 0.6991 0.7069 0.7026 0.7065

up 0.652 0.6622 0.6685 0.6752 0.685 0.6922 0.7019 0.6942 0.7013

smote 0.6576 0.6687 0.6697 0.6849 0.6918 0.7026 0.6988 0.7044 0.7028

reweight 0.6454 0.6792 0.6863 0.6928 0.7033 0.7003 0.7027 0.7066 0.7162

AUC embed-sm 0.6456 0.651 0.6604 0.6698 0.6763 0.6828 0.6891 0.6912 0.7048
em-smote 0.6652 0.6802 0.6904 0.6901 0.7011 0.7044 0.7118 0.7021 0.7064

gsm-T 0.6582 0.6792 0.6837 0.688 0.703 0.7063 0.7038 0.7084 0.7083

gsm-O 0.6618 0.6753 0.6828 0.6883 0.7038 0.6985 0.7044 0.7063 0.7159

gsm-preT 0.6641 0.6803 0.6966 0.699 0.7049 0.7069 0.7086 0.7125 0.7129

gsm-preO 0.6669 0.6851 0.6924 0.705 0.7022 0.7131 0.7051 0.7131 0.7171

26

6 Results and Discussion

6.5 Variation across datasets

To show the consistency of performance across different datasets, we have shown

the results in Table 6.4 with the test accuracy performance of HetGSMOTE on all

datasets. Here, we make the following observation:

e The HetGSMOTE variants perform comparatively better than the baselines in

most cases across all datasets. Variation in accuracy can be seen across datasets,

since the model performs at different levels on different datasets, irrespective of

the HetGSMOTE framework, which is expected.

Table 6.4: Test ACC vs imbalance ratios (HGNN base model and all datasets)

Dataset Settings 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
reweight 0.452 0.4763 0.499 0.5178 0.5148 0.523 0.528 0.5312 0.5342

embed-sm 0.4453 0.4495 0.4595 0.4813 0.4895 0.4985 0.507 0.5088 0.5187

em-smote 0.4553 0.4873 0.4935 0.5028 0.5172 0.524 0.5288 0.5268 0.5285

gsm-T 0.449 0.4812 0.4947 0.5013 0.5195 0.5252 0.5333 0.5253 0.537

IMDb gsm-0 0.4578 0.483 0.4875 0.5052 0.5242 0.5173 0.526 0.526 0.535
gsm-preT 0.4713 0.4835 0.5048 0.516 0.52 0.5338 0.5282 0.54 0.5442

gsm-preO 0.4718 0.4893 0.4948 0.518 0.5278 0.5367 0.5305 0.5438 0.5338

reweight 0.922 0.949 0.9573 0.959 0.964 0.9623 0.9653 0.9627 0.9607

embed-sm 0.9323 0.9523 0.9623 0.963 0.958 0.9673 0.9597 0.965 0.9627

em-smote 0.9477 0.9563 0.9643 0.962 0.9653 0.962 0.9667 0.964 0.9627

gsm-T 0.9343 0.9583 0.964 0.9657 0.962 0.968 0.9657 0.9657 0.9677

AMINER gsm-0 0.9377 0.9597 0.9617 0.9633 0.9657 0.964 0.9613 0.962 0.967
gsm-preT 0.9463 0.9597 0.9617 0.96 0.963 0.966 0.9633 0.9667 0.9657

gsm-preO 0.9513 0.9607 0.9647 0.9657 0.964 0.964 0.967 0.9623 0.9673

reweight 0.1675 0.1681 0.1525 0.1537 0.1581 0.1575 0.1644 0.1562 0.1525

embed-sm 0.1401 0.1494 0.1644 0.1506 0.1581 0.1525 0.1537 0.1531 0.1594

em-smote 0.154 0.1544 0.1569 0.1531 0.1537 0.16 0.1562 0.1456 0.1544

gsm-T 0.1508 0.1512 0.165 0.1469 0.1594 0.1512 0.145 0.1569 0.1544

Pubmed gsm-0 0.1477 0.1481 0.1563 0.15 0.1575 0.15 0.15 0.1494 0.1554
gsm-preT 0.1635 0.1644 0.1688 0.1544 0.1644 0.1537 0.1512 0.1588 0.1562

gsm-preO 0.17 0.1713 0.1694 0.1512 0.1631 0.15 0.1581 0.1562 0.1569

reweight 0.6464 0.6897 0.7354 0.7696 0.7996 0.805 0.7756 0.7914 0.7771

embed-sm 0.6367 0.6826 0.7047 0.7381 0.7666 0.7685 0.7679 0.774 0.7805

em-smote 0.6447 0.6837 0.7154 0.746 0.7637 0.7751 0.7359 0.762 0.7509

gsm-T 0.639 0.6678 0.7518 0.7576 0.7769 0.791 0.7857 0.7882 0.8001

DBLP gsm-0 0.6291 0.6567 0.7149 0.7557 0.7593 0.8079 0.7957 0.7924 0.79
gsm-preT 0.6349 0.6927 0.7331 0.7255 0.7691 0.7767 0.7945 0.802 0.8002

gsm-preO 0.6649 0.7136 0.7441 0.7615 0.7606 0.7671 0.7639 0.7841 0.7867

27

6 Results and Discussion

6.6 Influence of base model

To study how different base models influence performance, we have evaluated the
framework with HAN, MAGNN, and HGNN base models. The results are shown with

test accuracy for the IMDDb dataset in Table 6.5. We make the following observations:

e Here, on the IMDDb dataset, HAN performed the best among its model counter-
parts. Since it’s known that different models have different capacities to learn
from data, it is expected that the performance will vary across models, which

is visible in the results.

e Within each model, The HetGSMOTE framework, especially gsm-preO, has
performed better than in counterpart in most cases. This shows the impact of

the Het GSMOTE framework, regardless of the base models.

Table 6.5: Test ACC vs imbalance ratio (all base models and IMDb dataset)

Model Settings 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

reweight 0.452 0.4763 0.499 0.5178 0.5148 0.523 0.528 0.5312 0.5342
embed-sm 0.4453 0.4495 0.4595 0.4813 0.4895 0.4985 0.507 0.5088 0.5187
em-smote 0.4553 0.4873 0.4935 0.5028 0.5172 0.524 0.5288 0.5268 0.5285

HAN
gsm-T 0.449 0.4812 0.4947 0.5013 0.5195 0.5252 0.5333 0.5253 0.537
gsm-0 0.4578 0.483 0.4875 0.5052 0.5242 0.5173 0.526 0.526 0.535
gsm-preT’ 0.4713 0.4835 0.5048 0.516 0.52 0.5338 0.5282 0.54 0.5442
gsm-preO 0.4718 0.4893 0.4948 0.518 0.5278 0.5367 0.5305 0.5438 0.5338
reweight 0.3567 0.348 0.3672 0.4057 0.3383 0.3523 0.3475 0.338 0.3398
embed-sm 0.346 0.3463 0.3482 0.3503 0.3462 0.3385 0.345 0.3422 0.3628
MAGNN em-smote 0.4298 0.4703 0.4883 0.5008 0.4742 0.497 0.5128 0.4887 0.5038
gsm-T 0.3663 0.3547 0.3515 0.353 0.3615 0.3562 0.3828 0.3632 0.3625
gsm-0 0.3747 0.388 0.3593 0.3637 0.3885 0.3835 0.3668 0.3612 0.3895
gsm-preT’ 0.4455 0.4805 0.4783 0.4972 0.506 0.518 0.5148 0.5182 0.5163
gsm-preO 0.4537 0.4752 0.489 0.4975 0.5095 0.5252 0.5117 0.5202 0.509
reweight 0.4335 0.4396 0.4556 0.4664 0.4885 0.4878 0.508 0.4991 0.5116
embed-sm 0.4346 0.457 0.4658 0.4748 0.5003 0.4936 0.5026 0.5006 0.4948
HGNN em-smote 0.4335 0.442 0.4561 0.479 0.4936 0.5013 0.4971 0.4981 0.5011

gsm-T 0.4343 0.438 0.4606 0.475 0.4826 0.4923 0.4921 0.5061 0.5126
gsm-0 0.4311 0.4331 0.4606 0.4713 0.488 0.4918 0.499 0.504 0.5058
gsm-preT 0.4405 0.4571 0.4613 0.4863 0.4911 0.5028 0.5065 0.5001 0.5095
gsm-preO 0.444 0.448 0.476 0.4946 0.5026 0.5078 0.4981 0.507 0.508

28

Chapter 7

Summary

7.1 Conclusions

Our findings demonstrate the effectiveness of the HetGSMOTE approach for het-
erogeneous graphs across various datasets and models across various class-imbalance
conditions. Our approach is domain-independent, working on diverse datasets and
surpassing the baselines in the majority of the cases. It is also shown that this frame-
work is capable of handling different base models and, hence, can be further improved
when a new model appears in the domain.

We have also shown the effect of training size and upsampling ratio, where a
higher training size aids performance, whereas too low of an upsampling ratio hinders
performance. We have also shown how the choice of pretraining has helped the model
to exceed the performance. In conclusion, The effect of the HetGSMOTE framework,

regardless of the base model and dataset, has been shown by its superior performance.

7.2 Future Directions

In future experiments, the work can be taken in different directions. For starters,
testing the approach on tasks like link prediction, edge type classification, and node-
representation learning is important for graph-based studies as they also tend to suffer
from class imbalance problems. The approach can also be improved with different
choices of newer models capable of transfer learning or student-teacher models to

improve beyond a simple pretraining framework.

29

References

1]

Sanchez-Lengeling, B., Reif, E., Pearce, A., & Wiltschko, A. (2021). A Gen-
tle Introduction to Graph Neural Networks. Distill, 6(8), 10.23915/distill.00033.
https://doi.org/10.23915/distill.00033 2

Kipf, T. N., & Welling, M. (2017). Semi-Supervised Classification with Graph
Convolutional Networks. International Conference on Learning Representations.

1

Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Inductive representation learn-
ing on large graphs. Proceedings of the 31st International Conference on Neural

Information Processing Systems, 1025-1035. 1

Shi, C. (2022). Heterogeneous Graph Neural Networks. In L. Wu, P. Cui, J.
Pei, & L. Zhao (Eds.), Graph Neural Networks: Foundations, Frontiers, and

Applications (pp. 351-369). Springer Nature Singapore. 1, 2, 3

Liu, J., Shi, C., Yang, C., Lu, Z., & Yu, P. S. (2022). A survey on heterogeneous
information network based recommender systems: Concepts, methods, applica-

tions and resources. Al Open, 3, 40-57. 1, 3

Zhang, C., Song, D., Huang, C., Swami, A., & Chawla, N. V. (2019). Heteroge-
neous Graph Neural Network. Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, 793-803. 1, 3, 4.2.1,

5.2

30

REFERENCES

[7]

[12]

[13]

Wang, X., Ji, H., Shi, C., Wang, B., Ye, Y., Cui, P., & Yu, P. S. (2019). Heteroge-
neous Graph Attention Network. The World Wide Web Conference, 2022-2032.
1,3, 421,52

Yang, C., Xiao, Y., Zhang, Y., Sun, Y., & Han, J. (2022). Heterogeneous Network
Representation Learning: A Unified Framework With Survey and Benchmark.
IEEE Transactions on Knowledge and Data Engineering, 34(10), 4854-4873. 1,
5.2

Nguyen, T.-K., Liu, Z., & Fang, Y. (2023). Link Prediction on Latent Heteroge-
neous Graphs. Proceedings of the ACM Web Conference 2023, 263-273. 1

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002).
SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial In-
telligence Research, 16, 321-357. 1, 2

Zhao, T., Zhang, X., & Wang, S. (2021). GraphSMOTE: Imbalanced Node Clas-
sification on Graphs with Graph Neural Networks. Proceedings of the 14th ACM

International Conference on Web Search and Data Mining, 833-841. 1, 2, 3, 4.2.3

Han, H., Wang, W.-Y., & Mao, B.-H. (2005). Borderline-SMOTE: A New Over-
Sampling Method in Imbalanced Data Sets Learning. In D.-S. Huang, X.-P.
Zhang, & G.-B. Huang (Eds.), Advances in Intelligent Computing (pp. 878-887).

Springer. 2, 3

He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). ADASYN: Adaptive synthetic
sampling approach for imbalanced learning. 2008 IEEE International Joint Con-
ference on Neural Networks (IEEE World Congress on Computational Intelli-
gence), 1322-1328. 3, 3

31

REFERENCES

[14]

[15]

[16]

[17]

[18]

[19]

Last, F., Douzas, G., & Bacao, F. (2018). Oversampling for Imbalanced Learning
Based on K-Means and SMOTE. Information Sciences, 465, 1-20. 3, 3

Kovéacs, G. (2019). An empirical comparison and evaluation of minority over-
sampling techniques on a large number of imbalanced datasets. Applied Soft

Computing, 83, 105662. 3

Chawla, N. V., Lazarevic, A., Hall, L. O., & Bowyer, K. W. (2003). SMOTE-
Boost: Improving Prediction of the Minority Class in Boosting. In N. Lavrag,
D. Gamberger, L. Todorovski, & H. Blockeel (Eds.), Knowledge Discovery in
Databases: PKDD 2003 (Vol. 2838, pp. 107-119). Springer Berlin Heidelberg. 3

Zhang, Z., Cui, P., & Zhu, W. (2022). Deep Learning on Graphs: A Survey.
IEEE Transactions on Knowledge and Data Engineering, 34(1), 249-270. 3

Mikolov, T., Sutskever, 1., Chen, K., Corrado, G. S., & Dean, J. (2013). Dis-
tributed Representations of Words and Phrases and their Compositionality. Ad-

vances in Neural Information Processing Systems, 26. 5.2

Fu, X., Zhang, J., Meng, Z., & King, I. (2020). MAGNN: Metapath Aggregated
Graph Neural Network for Heterogeneous Graph Embedding. Proceedings of The
Web Conference 2020, 2331-2341. 3, 4.2.1, 5.2

Wang, H., Wang, J., Wang, J., Zhao, M., Zhang, W., Zhang, F., Xie, X., & Guo,
M. (2018). GraphGAN: Graph representation learning with generative adversar-
ial nets. Proceedings of the Thirty-Second AAAI Conference on Artificial Intelli-
gence and Thirtieth Innovative Applications of Artificial Intelligence Conference
and Eighth AAAT Symposium on Educational Advances in Artificial Intelligence,
2508-2515. 3

32

REFERENCES

[21]

[22]

[23]

[24]

[20]

Hsu, H. C., Lin, T.-L., Wu, B.-J., Hong, M.-Y., Lin, C., & Wang, C.-Y. (2024).
FincGAN: A Gan Framework of Imbalanced Node Classification on Heteroge-
neous Graph Neural Network. ICASSP 2024 - 2024 ITEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), 5750-5754. 3

Xia, R., Zhang, C., Zhang, Y., Liu, X., & Yang, B. (2024). A novel graph over-
sampling framework for node classification in class-imbalanced graphs. Science

China Information Sciences, 67(6), 1-16. 3

Wu, L., Xia, J., Gao, Z., Lin, H., Tan, C., & Li, S. Z. (2022). GraphMixup: Im-
proving Class-Imbalanced Node Classification by Reinforcement Mixup and Self-
supervised Context Prediction. Machine Learning and Knowledge Discovery
in Databases: European Conference, ECML PKDD 2022, Grenoble, France,
September 19-23, 2022, Proceedings, Part IV, 519-535. 3

Pan, T., Zhao, J., Wu, W., & Yang, J. (2020). Learning imbalanced datasets
based on SMOTE and Gaussian distribution. Information Sciences, 512,

1214-1233. 3

Zhao, M. (2025). Synthetic minority oversampling technique based on natural
neighborhood graph with subgraph cores for class-imbalanced classification. The

Journal of Supercomputing, 81(1), 248. 3

Jin, C., Ni, H., Miao, F., Zheng, T., Song, M., & Liu, Z. (2025). BARE: Balance
representation for imbalance multi-class node classification on heterogeneous in-

formation networks. Expert Systems with Applications, 272, 126506. 3

Bunkhumpornpat, C., Sinapiromsaran, K., & Lursinsap, C. (2012). DBSMOTE:
Density-Based Synthetic Minority Over-sampling TEchnique. Applied Intelli-
gence, 36(3), 664-684. 3

33

Appendix A

Machine Learning Glossary

Here is a list of domain-specific terms and their definitions in the context of training

Machine Learning, given in Table form (Tables A.1 and A.2).

Table A.1: Glossary of Machine Learning Terms

Term Definition

Machine Learning A field of artificial intelligence that enables systems to learn
patterns from data and make predictions or decisions without
being explicitly programmed.

Dataset A structured collection of data used for training, validating,
and testing machine learning models.

Labels Known target values or categories assigned to data instances,
used for supervised learning.

Classes The distinct categories or groups into which labeled data
points are classified.

Model A mathematical representation trained on data to perform a
task such as classification or regression.

Neural Network A type of machine learning model composed of layers of inter-
connected nodes that transform input data through learned
weights.

Layers Stacked units in a neural network where computations occur;
typically include input, hidden, and output layers.

MLP Multilayer Perceptron: A fully connected feedforward neural

network consisting of multiple layers used for nonlinear func-
tion approximation.

Encoder A component that transforms input data into a compact or
latent representation, often used in representation learning
tasks.

34

A Machine Learning Glossary

Table A.2: Glossary of Machine Learning Terms (continued)

Term

Definition

Embedding

Message Passing

Classification
Regression

Training

Pretraining

Validation

Testing

Loss
Backpropagation
Optimization
Accuracy

F1 Score

AUC (Area Under
the Curve)

A vector representation of discrete objects (e.g., nodes, words)
in a continuous space, capturing structural or semantic simi-
larity.

A core operation in graph neural networks where nodes ex-
change information with their neighbors to update their rep-
resentations.

A task where the model predicts a discrete label or category
for each input instance.

A task where the model predicts a continuous value for each
input instance.

The process of learning patterns in data, for performing a
specific task, by adjusting model parameters to minimize a
loss function.

The process of learning general patterns in data before train-
ing for a certain task.

The process of evaluating model performance on held-out data
during training to tune hyperparameters and prevent overfit-
ting.

The final evaluation of a trained model’s performance on a
separate dataset to assess generalization ability.

A measure of the difference between the model’s predictions
and the true values, guiding the learning process.

Process of computing gradients from the loss through the
model.

The process of minimizing the loss function by updating
model parameters using gradients from backpropagation.
The proportion of correctly predicted labels among all predic-
tions. It is often used for node classification tasks.

The harmonic mean of precision and recall, providing a
balanced measure of performance, especially in imbalanced
datasets.

A performance metric that evaluates the ability of a model to
distinguish between classes across different thresholds.

35

	Introduction
	Background
	Related Works
	Methodology
	Problem Statement
	HetGSMOTE framework
	Encoder
	SMOTE
	Edge Generator
	Classifier

	Baseline settings and proposed Settings

	Experiments
	Optimization
	Datasets
	Experimental Settings:
	Evaluation Metric
	Configuration

	Results and Discussion
	Influence of Up-sampling Ratio
	Influence of Training size
	Influence of pre-Training
	Performance of HetGSMOTE
	Variation across datasets
	Influence of base model

	Summary
	Conclusions
	Future Directions

	References
	Appendix Machine Learning Glossary

